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Management of Canada geese (Branta canadensis) can be a balance between providing sus-

tained harvest opportunity while not allowing populations to become overabundant and

cause damage. In this paper, we focus on the Atlantic population of Canada geese and use

stochastic dynamic programming to determine the optimal harvest strategy over a range

of plausible models for population dynamics. There is evidence to suggest that the popula-

tion exhibits significant age structure, and it is possible to reconstruct age structure from

surveys. Consequently the harvest strategy is a function of the age composition, as well as

the abundance, of the population. The objective is to maximize harvest while maintain-

ing the number of breeding adults in the population between specified upper and lower

limits. In addition, the total harvest capacity is limited and there is uncertainty about the

strength of density-dependence. We find that under a density-independent model, harvest

is maximized by maintaining the breeding population at the highest acceptable abundance.

However if harvest capacity is limited, then the optimal long-term breeding population

size is lower than the highest acceptable level, to reduce the risk of the population grow-

ing to an unacceptably large size. Under the proposed density-dependent model, harvest is

maximized by maintaining the breeding population at an intermediate level between the
bounds on acceptable population size; limits to harvest capacity have little effect on the

optimal long-term population size. It is clear that the strength of density-dependence and

constraints on harvest significantly affect the optimal harvest strategy for this population.

Model discrimination might be achieved in the long term, while continuing to meet man-

agement goals, by adopting an adaptive management strategy.

information, such as environmental variables, it is impossible
. Introduction

he sustainable use of wild populations, such as fish and
orests, poses significant challenges (Ludwig et al., 1993;

osenberg et al., 1993). In addition to social, political and
conomic issues, there are a number of scientific uncertain-
ies that inhibit our ability to identify sustainable exploita-
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tion strategies. Populations are influenced by environmental
variation, which is unpredictable and uncontrollable. While
managers may estimate population size and other relevant
to measure the state of the system without error. The har-
vest rates and other regulations set by managers will not be
executed exactly as intended. Finally, the understanding of
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the population that is used to set regulations (the model) is
not a perfect representation of actual population dynamics
(Williams et al., 1996).

In representing population dynamics, one of the critical
questions is how much structural detail to include. There must
be sufficient detail to capture key dynamics, but not so much
that estimation issues undermine the predictive ability of the
model. One common structural detail that can play a signifi-
cant role in sustainable harvest is the age composition of the
population. Individuals of different ages may contribute dif-
ferently to the population growth rate through reproduction
(motivating the study of reproductive value; McArthur, 1960),
thus the age structure of the population can affect growth
rate and harvest potential. The consideration of age structure,
however, brings added uncertainties. First, the modeling pro-
cess becomes more complicated by including the size of each
age group within the population. This increases the number of
population processes that must be described, and the number
of parameters to be estimated. Second, it is common for har-
vest regulations to be set using an estimate of total population
size, but it is usually much more difficult to measure the pro-
portion of the population belonging to each age group. Third,
the optimal harvest will have age structure, but it is unlikely
that the individuals to be harvested can be selected according
to age (Hauser et al., 2006).

In North America, Canada geese (Branta canadensis) are an
important harvested species that exhibit considerable popu-
lation structure. The Atlantic population, to be modeled in
this paper, has a range covering eastern parts of the United
States and Canada. Like many species of waterfowl, Canada
geese are hunted for sport, an activity circulating millions of
dollars each year (Henderson, 2005). Resident (non-migratory)
populations of geese and migratory populations during the
non-breeding season can damage crops and cause public nui-
sance complaints. Thus, management of goose populations
can be a balance between providing high harvest opportunity
while not allowing populations to get so large as to cause dam-
age (Hindman et al., 2004).

Canada geese in the Atlantic population, like other goose
populations, exhibit life-history attributes that differ by age.
The age at first reproduction is typically greater than 3 years
(Hardy and Tacha, 1989). There is reason to believe that birds
of different ages may have different survival rates, includ-
ing a different vulnerability to harvest (Mowbray et al., 2002).
Thus, a structured model may be necessary to fully capture the
dynamics of this population, and hence, to derive an appro-
priate harvest policy.

Before hunting regulations for Atlantic population Canada
geese are set, an aerial survey of breeding grounds is con-
ducted annually in June to estimate the number of breed-
ing pairs of birds. In addition, annual reproduction is esti-
mated from the age-ratio of birds banded in the late summer
(Hindman et al., 2004). The abundance of non-breeding birds
in several age classes can be reconstructed from these two
data series. Thus, observation of the system state can support
decision-making that depends on the age structure of the pop-
ulation.

The objective of harvest management in the past has
most commonly been to maximize the value of the harvest
taken over some time horizon. Increasingly, there is concern
2 0 1 ( 2 0 0 7 ) 27–36

about overabundance for some species in conjunction with
the desire to maintain the population rather than eradicate
it. Recent examples include raccoons (Rosatte, 2000), gulls
(Brooks and Lebreton, 2001), deer (Doerr et al., 2001; Giles and
Findlay, 2004), moose (Nilsen et al., 2005), and a variety of
species of geese (Ankney, 1996). Maintaining population size
above a set level has also emerged as a goal for waterfowl man-
agement (Nichols et al., 1995; Williams and Johnson, 1995). For
example, the objective applied to mallards has been to maxi-
mize the value of harvest, with harvest devalued when popu-
lation size falls below some threshold (Johnson et al., 1997).
Given that Canada geese potentially have negative effects
on society at very high numbers as well as very low num-
bers, we will adapt this objective to incorporate lower and
upper thresholds, between which population size is deemed
to be acceptable. Demographic structure has not been consid-
ered an important influence on population dynamics for other
waterfowl, and so previous management strategies have been
dependent only on total population size, along with an envi-
ronmental state variable (Williams, 1996a; Johnson et al., 1997,
2002).

We use stochastic dynamic programming (SDP) to find the
optimal harvest strategy for this population of Canada geese,
based on the estimated dynamics and the management objec-
tives. This technique has been used for optimizing harvest in
the past (e.g., Walters, 1975; Williams, 2001). However, demo-
graphic structure (age, size and/or sex) has rarely been consid-
ered, probably due to the increased number of dimensions in
the state space (exceptions are Stocker, 1983; Milner-Gulland,
1997). Thus, the optimization of harvest for an age-structured
population with an objective that incorporates both harvest
value and population size is a novel study that may develop
new rules of thumb pertinent to the management of Canada
geese.

In this paper, we explore the impact of two key uncertain-
ties on the optimal harvest strategy. First, there is a limited
ability to control the population. Given a finite number of
hunters, there is an upper limit on the total harvest that can be
taken each year. Part of the management objective is to main-
tain population size below a certain upper bound, so limited
control can lead to a risk-averse strategy that foregoes har-
vest opportunity to ensure the population remains within the
desired bounds.

Second, there is some uncertainty about the strength of
density-dependence. Over the range of abundance observed
for this species, there is no clear information about the car-
rying capacity of the population. General models of harvested
populations indicate that the optimal harvest strategy is sensi-
tive to the strength of density-dependence (Reed, 1979; Lande
et al., 1995), and so we pose two models of reproduction to
investigate the potential effects of density-dependence.

2. Model and methods

As the basis of this study, we used the decision framework

and population model developed by the Atlantic Population
Canada Goose Adaptive Harvest Management (APCG AHM)
working group, on which all of the authors serve. The working
group intends to describe the rationale for the decision frame-
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Fig. 1 – The life cycle of the Canada goose. Nodes represent
1-year-olds (1), 2-year-olds (2), non-breeding adults (NB),
and breeding adults (B). Arrows pointing left-to-right give
e c o l o g i c a l m o d e l l i

ork and the development and parameterization of the model
tructure in a future publication. These elements, but not their
evelopment, are described below, along with the methods
sed to derive optimal strategies, investigate the properties of
uch strategies, and explore the effects of uncertainty.

.1. Management objective

hile the Atlantic population of Canada geese is not currently
onsidered to be overabundant, experience with other goose
opulations raises some concern about the future status of
his population (Ankney, 1996). For this reason we set an upper
imit on acceptable population size, NMAX. In addition to this
bjective, there is a desire to maintain population size above a
inimum level needed to sustain a satisfactory level of hunt-

ng, NMIN, and to maximize the opportunity for harvest, Ht.
To represent these objectives, we seek to maximize

∞

t=0

u(N(B)
t )Ht, (1)

here

(N) =
{

1, NMIN < N < NMAX

0, otherwise.

e use N
(B)
t to denote the number of breeding adult birds at

ime t, and Ht to denote the total harvest taken at time t. Har-
est is valued by a utility function u(N), indicating whether or
ot the current population size N is acceptable. The number
f breeding adult birds must be kept between NMIN and NMAX

or management to be completely acceptable, and harvest is
f no value when the number of breeding adults is outside
hese limits. Thus, the objective aims to maximize the harvest
aken over an infinite time horizon, while keeping the number
f breeding adults between NMIN and NMAX.

.2. Decision and state variables

here is evidence to suggest that there are four significantly
ifferent demographic groups within the Canada goose pop-
lation. These are the 1-year-olds (1), 2-year-olds (2), non-
reeding adults (NB), and breeding adults (B). The state of
he population is assessed just before the breeding season,
o that the youngest individuals are nearing their first birth-
ay and are classified as 1-year-old. Adult birds are 3 or more
ears of age, and individuals may or may not breed in a given
ear.

The control available to management is to set a harvest rate
n the breeding adult population, h

(B)
t . Other groups within

he population will be harvested subject to their vulnerabil-

ty to harvest, relative to breeding adult birds. Young birds
re considered to be inexperienced and therefore more eas-
ly hunted. Thus, the age classes respond to the set harvest
ate in different ways. The harvest rate is limited by the total
umber of birds that can possibly be taken in 1 year. We set
MAX to be the maximum total harvest that can be taken
nnually.
stage-specific survival rates, the arrow pointing right-to-left
gives stage-specific fertility.

2.3. State dynamics

Fig. 1 shows the life cycle of the Canada goose, as modeled
in this paper. In a given year, a proportion of 1-year-olds will
survive to become 2-year-olds. A proportion of 2-year-olds will
survive to become adults. A proportion P of these individuals
will breed in the next year, with the remainder being classed
as non-breeding adults. For every breeding adult, R offspring
are hatched. These offspring undergo natural mortality and
harvest before becoming 1-year-olds in the following year.

The number of offspring hatched in spring fluctuates from
year to year. There is evidence that it is a function of the tim-
ing of the snow melt on breeding grounds (Hindman et al.,
2004). There is uncertainty as to whether there is density-
dependence. We will pose two possible models for breed-
ing productivity Rt in year t that reflect different hypotheses
regarding density dependence.

In the first model, we assume breeding productivity is a
uniformly distributed random variable that is independent of
total population size. Stochasticity in Rt represents the influ-
ence of the timing of the snow melt and process error.

In the second model, we assume that the impact of the
timing of snow melt, zt, can be described as a standard Nor-
mal random variable. Breeding productivity has the density-
dependent function

Rt = exp(a + bzt + εt)

1 + exp[c(NTOT
t − d)]

, (2)

where εt is a Normal process error term, and NTOT
t is the total

population size at time t. We assume that a, b, c, d > 0 are known
constants and that εt has a mean of zero and known variance
�2

ε . Conditional on knowing total population size, breeding
productivity Rt has a lognormal distribution, with parameters

� = a − ln(1 + exp[c(NTOT
t − d)]) (3)
and

�2 = b2 + �2
ε . (4)
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After using one of the above models to calculate breeding pro-
ductivity, we calculate the number of offspring in year t as

N
(0)
t = RtN

(B)
t ,

the number of offspring hatched per breeding adult multiplied
by the number of breeding adults.

The control variable is the harvest rate on breeding adults,
h

(B)
t . Let the relative vulnerability of offspring and non-

breeding birds be d(0) and d(NB), respectively. Then the harvest
rates on offspring and non-breeding birds are

h
(0)
t = min{d(0)h

(B)
t , 1}

and

h
(NB)
t = min{d(NB)h

(B)
t , 1},

so that the harvest rate on each class is constrained to be no
more than one (total removal of the class). Thus, the harvest
rate applied to the total population is likely to be different from
the control variable h

(B)
t .

The total harvest prescribed for each group then becomes

H
(0)
t = h

(0)
t N

(0)
t , (5)

H
(NB)
t = h

(NB)
t [N(1)

t + N
(2)
t + N

(NB)
t ], (6)

and

H
(B)
t = h

(B)
t N

(B)
t . (7)

However, we are limited to removing at most HMAX birds from
the population. If the total harvest prescribed by our harvest
rate h

(B)
t exceeds HMAX, then we set the total harvest to be HMAX:

Ht = min{H(0)
t + H

(NB)
t + H

(B)
t , HMAX}.

If Ht = HMAX, then we must also rescale our actual harvest rates
by multiplying h

(0)
t , h

(NB)
t and h

(B)
t by HMAX/[H(0)

t + H
(NB)
t + H

(B)
t ].

The survival rates of birds in each demographic group are
calculated by combining natural mortality with the harvest
rates:

S
(0)
t = s(0)(1 − h

(0)
t ),

S
(1)
t = s(1)(1 − h

(NB)
t ),

S
(2)
t = s(2)(1 − h

(NB)
t ),

S
(NB)
t = s(NB)(1 − h

(NB)
t ),

and

S
(B)
t = s(B)(1 − h

(B)
t ),

where s(i) is the proportion of birds in demographic group i that
survive natural mortality, and S

(i)
t is the proportion of birds in

demographic group i that survive both natural mortality and
harvest during year t. It is assumed that harvest occurs over
a sufficiently short season that natural mortality is negligible
during this time.
Then the population at the beginning of year t + 1 is com-
posed of

N
(1)
t+1 = S

(0)
t N

(0)
t , (8)
2 0 1 ( 2 0 0 7 ) 27–36

N
(2)
t+1 = S

(1)
t N

(1)
t , (9)

N
(NB)
t+1 = (1 − P)(S(2)

t N
(2)
t + S

(NB)
t N

(NB)
t + S

(B)
t N

(B)
t ), (10)

and

N
(B)
t+1 = P(S(2)

t N
(2)
t + S

(NB)
t N

(NB)
t + S

(B)
t N

(B)
t ), (11)

where P is the proportion of adults that breed in a given year.
Thus, the state dynamics link management (setting h

(B)
t ) to

the state variables {N(1), N(2), N(NB), N(B)}, which in turn con-
tribute to the objective (expression (1)).

2.4. Optimization

We used stochastic dynamic programming to find the opti-
mal state-dependent harvest policy. For a system with Marko-
vian dynamics such as this one, SDP uses Bellman’s equation
recursively, backwards through time, to determine the optimal
harvest decision as a function of the system state (Puterman,
1994). For this management problem, Bellman’s equation is:

V(x, t) = maxh{u(x4)H(h, x) + Ex′ [V(x′, t + 1)]}, (12)

where V(x, t) is the value of using the optimal harvest strat-
egy from year t into the future, given the population is in
state x at time t. State x is a vector of four state variables
(N(1)

t , N
(2)
t , N

(NB)
t , N

(B)
t ). This value V is found by determining the

value of using harvest rate h on breeding adults in year t, fol-
lowed by the optimal strategy from year t + 1 onwards, then
choosing the harvest rate h that gives the highest value. Since
the model of state dynamics is Markovian, then the decision
h only directly affects returns during the year t and then the
system state in year t + 1, denoted x′. The returns generated
during this year are u(x4)H(h, x), which is the term in expres-
sion (1) that refers to year t. The value of the utility function
depends on the fourth state variable, breeding population size
Nt

(B). The total harvest taken, H, depends on the harvest deci-
sion h and the population state x. The expected future value of
the strategy is the value of using the optimal harvest strategy
from year t + 1 into the future, given the population is in state
x′ at time t + 1. However the future state x′ is uncertain, and so
we must integrate over all possible future states, weighted by
their probability of occurrence, which is determined from the
state dynamics.

The optimal strategy over an infinite time horizon can be
determined by the methods of value iteration and policy iter-
ation (Puterman, 1994). Alternatively, SDP can be used over
increasingly long time horizons, eventually reaching a sta-
tionary state-dependent strategy which does not depend on
the time period or the terminal reward condition (Williams,
1996b). We take this approach and set a zero-reward terminal
condition at time horizon T:

V(x, T) = 0, for all x.
Then we work backwards through time using the recursive Eq.
(12) to determine the optimal state-dependent strategy over
increasingly long time horizons. This was carried out in the
ASDP software package (Lubow, 1995).
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Table 1 – Values taken by state, decision and random
variables for the optimization

Variable Values

Density-independent model
N(1), N(2), N(B) 0:100000:1000000a

N(NB) 0:50000:500000a

h
(B)
t 0:0.1:0.6a

Rt 1, 1.5, 2, 2.5, or 3 with equal
probability

Ceiling in Eqs. (6)–(9) 800000
HMAX 200000:100000:1500000a

Density-dependent model
N(1), N(2), N(NB) 0:50000:550000a

N(B) 0:100000:1000000a

h
(B)
t 0:0.1:0.6a

Discretized standard
Normal distribution

Pr(x = −2) = 0.0400
Pr(x = −1.5) = 0.0656
Pr(x = −1) = 0.1210
Pr(x = −0.5) = 0.1747
Pr(x = 0) = 0.1974
Pr(x = 0.5) = 0.1747
Pr(x = 1) = 0.1210
Pr(x = 1.5) = 0.0656
Pr(x = 2) = 0.0400

Rt exp(� + �x), for x above and �, �

from Eqs. (1) and (2)
HMAX 200000:100000:1500000a

a Notation X:Y:Z indicates that the minimum value considered is
X, increasing in steps of size Y to a maximum value Z.

Table 2 – Values for parameters in the optimization

Parameter Value

NMIN 120000
NMAX 500000
a 0.7
b 0.15
c 3.0 × 10−6

d 800000
�ε 0.2
P 0.8
d(0) 2.0
d(NB) 1.0
s(0) 0.65
s(1) 0.86

(2)
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l
i
d
v
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Fig. 2 – A simulation of the population using the
density-independent model, in the absence of harvest. All
classes have an initial abundance of 100,000; lines give
total abundance (thin solid), abundance of 1-year-olds
(dash), abundance of 2-year-olds (dot), abundance of
non-breeding adults (dash-dot) and abundance of breeding
s 0.86
s(NB) 0.86
s(B) 0.86

The method of SDP requires us to discretize the state, deci-
ion and random variables. The values used in this paper are
isted in Table 1. To prevent inappropriate extrapolation, a ceil-
ng was placed on population size in Eqs. (8)–(11) in the case of
ensity-independent breeding productivity. Other parameter
alues required for the model are listed in Table 2.
. Results

e will look briefly at population dynamics in the absence
f harvest, under both the density-dependent and density-
adults (thick solid).

independent models. The optimal harvest strategy is a func-
tion of four state variables, and is therefore very difficult to
visualize. Instead we will focus on the equilibrium population
size when the optimal harvest strategy is used under each
hypothesis for density-dependence and harvest limitation.
We do this by simulating populations subject to harvest and
recording the long-term population fluctuation. In particular
we look at the number of breeding adults in the population,
since their abundance contributes directly to the objective.

3.1. Density-independent model

In the absence of harvest, the density-independent model for
breeding productivity causes the number of breeding adults in
the population to grow without bound. For computational rea-
sons our model is not truly density-independent, as we impose
a ceiling on each age group (Table 1). Therefore, the number of
breeding adults maintains this ceiling over time (Fig. 2) rather
than increasing without bound. Other age groups fluctuate
below their ceiling, although the number of 1-year-old birds
frequently reaches its ceiling also. The total population size
fluctuates between 2 and 2.6 million birds.

The optimal harvest strategy was derived for a variety of
values of maximum harvest HMAX (Table 1). An example run
with a maximum harvest of 500,000 is shown in Fig. 3. In Fig. 4
we display the mean number of breeding adults in the pop-
ulation and the fluctuation around the mean for the remain-
ing observations. Each harvest strategy was simulated for 100
runs, each 200 years in length. The first 100 years in each run
were discarded.

When HMAX was set to 200,000, the population was not
always successfully held within the desired range, i.e. a breed-
ing population size between NMIN and NMAX. In 90 of the 100
runs, the population grew until the number of breeding adults
reached its ceiling. Since the ceiling was constructed for com-
putational convenience and has no biological relevance, these

runs were discarded from the data plotted in Fig. 4. However,
this information does indicate the likelihood that the breed-
ing population will not be maintained in the desired range over
the long term, when total annual harvest is severely limited.
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Fig. 3 – A simulation of the population using the
density-independent model, under the optimal harvest
strategy with maximum harvest HMAX = 500,000: (a)
population abundance and structure over time, lines give
total abundance (thin solid), abundance of 1-year-olds
(dash), abundance of 2-year-olds (dot), abundance of
non-breeding adults (dash-dot) and abundance of breeding
adults (thick solid); (b) the harvest rate set for breeding

adult birds over time. All classes have an initial abundance
of 100,000.
Since population growth is independent of density in the
range of interest, harvest (and hence the objective) is maxi-
mized when the population is large. We see in Fig. 4 that when
there is a great capacity to harvest the population (HMAX is

Fig. 4 – Long-term breeding population size under the
optimal harvest strategy, as a function of maximum annual
harvest HMAX, using the density-independent model for
breeding productivity. Asterisks denote the mean
population size over 100 simulations; error bars indicate
the interval that covers 95% of observations. Dotted lines
show the lower and upper acceptable thresholds NMIN and
NMAX, respectively.
2 0 1 ( 2 0 0 7 ) 27–36

large), then the population is maintained at a level close to
the upper acceptable threshold, NMAX. Stochasticity in breed-
ing productivity, R, means that population size will fluctuate,
and the mean breeding population size is held a little below
the upper threshold to reduce the risk of the breeding popu-
lation exceeding the threshold. Fluctuations above the mean
breeding population size are smaller than fluctuations below
the mean. The optimal strategy is able to avoid increases in
abundance above the upper threshold NMAX by increasing the
harvest rate. However the only available response to popula-
tion declines is to reduce harvest until the breeding population
increases of its own accord. These declines incur some harvest
loss but this is of less consequence than allowing the breeding
population to exceed the upper threshold NMAX, which com-
pletely eliminates the value of harvest to the objective.

When ability to control is limited (HMAX is low), then the
breeding population size is held well below the maximum
acceptable level. If the population were permitted to grow
nearer to the upper threshold, the maximum possible harvest
could not prevent the population from exceeding the upper
threshold, so that the objective is not achieved in the long
term. When control is extremely limited (HMAX is 200,000 or
300,000), random population fluctuations below the minimum
acceptable size NMIN occasionally occur. These are caused by
random fluctuation in breeding productivity R, and are per-
mitted because the alternative is increasing the risk that the
manager will ‘lose control’ of the population and will be unable
to prevent it from exceeding the upper threshold indefinitely.

Thus, limited control can have a significant effect on the
optimal harvest strategy if breeding productivity is density-
independent over the range of interest. There is a trade-off
between maintaining the population at a high abundance to
maximize harvest, while ensuring that the maximum har-
vest capacity can maintain breeding population size below the
maximum acceptable level.

3.2. Density-dependent model

In the absence of harvest, the population under density-
dependent breeding productivity approaches a stochastic car-
rying capacity above the maximum acceptable population size
NMAX. Using the parameters given in Table 2, the breeding pop-
ulation fluctuates around 700–800 thousand birds, while the
total population size is 1.2–1.4 million birds (see Fig. 5 for an
example simulation).

Given that breeding productivity is density-dependent in
the manner of Eq. (2), there should be a particular target breed-
ing population size that maximizes the stochastic annual har-
vest. We investigate this by simulating the population at a
variety of fixed harvest rates, assuming that there is no upper
limit on total harvest (HMAX is infinite). In Fig. 6 we present the
maximum sustainable yield for this population and the equi-
librium breeding population size at which this occurs. These
plots were created by simulating the population under a fixed
harvest rate h(B), making 100 runs, each 200 years in length,
and discarding the first 100 observations, but they also could

have been derived by solving the equations numerically, using
the methods of Runge and Johnson (2002). The annual yield
and breeding population size were recorded. Fig. 6(a) indicates
that annual yield is maximized for a harvest rate of about 13%,
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Fig. 5 – A simulation of the population using the
density-dependent model, in the absence of harvest. All
classes have an initial abundance of 100,000; lines give
total abundance (thin solid), abundance of 1-year-olds
(dash), abundance of 2-year-olds (dot), abundance of
non-breeding adults (dash-dot) and abundance of breeding
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dults (thick solid).

hich holds the long term breeding population size at a little
ver 300,000 birds, although there is some stochastic fluctua-
ion in abundance (Fig. 6(b)).

To determine the effect of limited control on the opti-
al harvest strategy, we ran state-dependent optimizations

nd simulations in the same manner as for the density-
ndependent model. (Variable levels and parameter values are
isted in Tables 1 and 2, respectively.) Fig. 7 gives an example
un of the optimal harvest strategy when maximum harvest
s 500,000. The number of breeding adults did not exceed the

aximum acceptable size NMAX in any simulation.
Fig. 8 displays the mean breeding population size and

uctuation around the mean, under a variety of levels of
aximum harvest HMAX (Table 1). For all levels of control

bove HMAX = 500,000, the breeding population is held at

bout 300,000 birds with some fluctuation due to stochastic-
ty in breeding productivity. When maximum total harvest
s 300,000 or 400,000 the population is held slightly lower
o ensure that control is maintained. When maximum har-

ig. 6 – Simulation of the population with density-dependent bre
nnual harvest, and (b) breeding population size, as a function o
f observations fall between the dotted lines.
2 0 1 ( 2 0 0 7 ) 27–36 33

vest is 200,000, population fluctuations have greater ampli-
tude than when larger harvests are possible. With such lim-
ited control it is difficult to maintain the population at the
level giving maximum sustainable yield. However the density-
dependent function for breeding productivity ensures that the
population never exceeds its upper acceptable threshold. This
result depends critically on the fact that the population size
that achieves maximum sustainable harvest falls within the
desired bounds. If the nature of density-dependence in the
population did not have this property, then there would be
tension between the different components of the objective,
and the limits to control could play a more central role.

3.3. Management implications

In this paper we have explored a variety of models for the
optimal control of Canada geese, all of which may reason-
ably describe the dynamics of the Atlantic population and the
constraints on harvest. We posed two models for stochastic
breeding productivity, and investigated a variety of values for
the upper limit on annual harvest. The objective was to maxi-
mize harvest, while maintaining the breeding population size
between specified upper and lower bounds.

The optimal harvest strategy looks markedly different over
the range of alternative models chosen. Under the density-
independent model, sustainable annual harvest increases
with breeding population size. When there is sufficient con-
trol available it is optimal to maintain the breeding popula-
tion as close to the upper acceptable limit as possible, while
ensuring that fluctuations rarely exceed this value. When con-
trol is limited then the population is optimally maintained
at a lower level, to ensure that it does not exceed harvest
capacity and the upper acceptable limit on population size,
indefinitely.

Under the density-dependent model for breeding produc-

tivity, the maximum sustainable yield is obtained by keep-
ing the breeding population size well below the maximum
acceptable level. This equilibrium population size appears to
be optimal for almost all levels of harvest control. However

eding productivity under a constant harvest rate: (a)
f harvest rate h(B). Mean values are given by solid lines, 95%
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Fig. 7 – A simulation of the population using the
density-dependent model, under the optimal harvest
strategy with maximum harvest HMAX = 500,000: (a)
population abundance and structure over time, lines give
total abundance (thin solid), abundance of 1-year-olds
(dash), abundance of 2-year-olds (dot), abundance of
non-breeding adults (dash-dot) and abundance of breeding
adults (thick solid); (b) the harvest rate set for breeding

adult birds over time. All classes have an initial abundance
of 100,000.
the amplitude of fluctuations may increase under very lim-
ited control. If the breeding population size at which annual
harvest is maximized exceeds the upper acceptable limit then
we expect that a trade-off between maximizing harvest and

Fig. 8 – Long-term breeding population size under the
optimal harvest strategy, as a function of maximum annual
harvest HMAX, using the density-dependent model for
breeding productivity. Asterisks denote the mean
population size over 100 simulations; error bars indicate
the interval that covers 95% of observations. Dotted lines
show the lower and upper acceptable thresholds NMIN and
NMAX, respectively.
2 0 1 ( 2 0 0 7 ) 27–36

controlling abundance will arise, as previously seen for the
density-independent model.

These results are consistent with other studies. The
strength and form of density-dependence are well known to
affect the optimal harvest strategy when the objective is to
maximize yield (Saether et al., 1996; Johnson et al., 1997; Runge
and Johnson, 2002). When breeding productivity is density-
independent then harvest is maximized by letting the pop-
ulation grow as large as possible, whereas a particular finite
population size maximizes harvest under density-dependent
breeding productivity. Our additional objective of maintaining
population size within set limits, which has rarely been inves-
tigated, places additional constraints on the target population
size.

Reduction of target population size when harvesting capac-
ity is limited has been observed previously (Lande et al.,
1995; Saether et al., 1996), but this applied only to a density-
dependent model. Keeping in mind our additional objective
regarding population size, results for both density-dependent
and density-independent models consider the risk of being
unable to harvest a very large population down to the level that
best achieves the objective, whether the objective is a function
of harvest value, population size, or both.

Optimizing harvest with an objective that incorporates
both harvest yield and population size has only been seen
for other waterfowl management (Johnson et al., 1997, 2002).
In particular, two different hypotheses regarding the strength
of density-dependence were also considered for the man-
agement of mallards. The optimal strategy for a population
with strong density-dependence had more liberal regulations
than the optimal strategy under weak density-dependence.
We also found this to be the case when breeding population
size is low to moderate. However, we found that the optimal
strategy under the density-independent model is more liberal
when breeding population size exceeds the maximum accept-
able size. In this scenario a population under the density-
independent model has a higher growth rate than under the
density-dependent model, and requires a higher harvest rate
to ensure that the population returns to an acceptable size.
Johnson et al. (1997, 2002) did not impose an upper limit on
acceptable population size. These results may not apply gener-
ally to other studies since the optimal equilibrium population
size, harvest rate and harvest yield are dependent upon the
parameter values and functional form governing dynamics
(Saether et al., 1996; Runge and Johnson, 2002).

Given that the optimal harvest strategy varies markedly
between hypotheses, achievement of management goals
could clearly be improved with a better understanding of
population dynamics and limits to annual harvest. The data
collection required to discriminate between these alterna-
tive models is a very slow process, but might be sped up by
experimental management. The use of adaptive management
techniques (Walters, 1986; Williams et al., 1996) can find the
optimal trade-off between meeting management goals in the
short term and experimenting for learning in the long term.

A number of previous studies have investigated optimal

passive and active adaptive management when the strength
of density-dependence regulating a population is uncertain
(Walters, 1981; Ludwig and Walters, 1982; Johnson et al., 1997).
If all models are weighted evenly, then the optimal passive
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daptive harvest strategy is likely to be a smooth weighted
verage of the optimal harvest strategies under each model.
earning about the strength of density-dependence can be
ccelerated by forgoing harvest in the short term (active adap-
ive management). This allows the population to increase
o an abundance where the alternative models of density-
ependence make very different predictions of future popu-

ation size, so that subsequent monitoring will indicate which
odel best supports the observed population dynamics. How-

ver, limited harvesting capacity was not considered in these
tudies and this poses an additional risk of ‘losing control’ of
he population if it is permitted to grow too large. It remains
o be seen whether the potential benefits of allowing the pop-
lation to grow large (while still within the acceptable bounds
f the objective) outweigh the short-term sacrifice of harvest
nd the risk of the population explosion.
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