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“Model selection based on information theory is a relatively new paradigm in the biological and statistical
sciences and is quite different from the usual methods based on null hypothesis testing.” – Burnham and
Anderson (2002:3)

Why Compare Models?

Statistical models provide a reliable mechanism for learning
about unknown aspects of the natural world. By their very
nature, however, statistical models are placeholders for true
data-generating processes. Because true data-generating
processes are unknown, statistical models represent our
mathematical understanding of them while accounting for
inherent randomness in how the underlying ecological
process operates and how the data we may observe arise.
In designing statistical models, we may have multiple
perspectives about the mechanisms that give rise to the data.
Therefore, a critical component of the scientific process
involves the assessment of model performance, often in
terms of predictive ability. We value statistical models that
provide accurate and precise predictions because they excel
at mimicking the data-generating mechanisms. We refer to
an assessment of the predictive ability of a statistical model
as validation.

We are also generally interested in model interpretation,
which is focused on the question of which variables are
more or less important in predicting the response. In a high-
dimensional problem, it is quite likely that some subset
of predictor variables are not strongly associated with the
response variable; or, in the extreme, not associated at all
(such that the estimates for these variables are zero). This
interest in variable selection is often intrinsically linked to
questions about relative scoring among a set of candidate
models fit to a set of data.

In this chapter, we introduce the concept of model

scoring for parametric statistical models, how we calculate
model scores, and what we do with the scores. We place the
concept of scoring in a broader discussion about parsimony
and its utility for prediction. We begin with likelihood-based
methods and then shift to Bayesian methods, providing
examples throughout based on a generalized linear model
(GLM) for avian species richness. We also discuss the
relationship between model scoring and variable selection.

Scoring Models
Deviance

Given that prediction is an important indicator by which
to compare models, we often rely on a quantitative metric
(i.e., a score) for assessing the predictive ability of models.
Prediction is a form of learning about unobserved random
quantities in nature. In statistics, prediction typically refers
to learning about unobserved data. For example, suppose
there are two sets of data, one you collect (y, an 𝑛 × 1
vector) and one you do not collect (y𝑢) (i.e., data that
are unobserved). Statistical prediction involves learning
about y𝑢 given y. A point prediction results in our single
best understanding of the unobserved data ŷ𝑢 given the
observed data (y) and statistical model M. Then, to assess
our prediction, we might consider a score that measures the
distance between our prediction and truth (Gneiting, 2011).

Numerous issues arise when scoring statistical models
based on predictive ability. First, we typically do not know
the unobserved data (y𝑢), so a score cannot be calculated.
Second, if we did have access to the unobserved data, the

Mevin B. Hooten is in the Department of Statistics and Data Sciences, University of Texas, Austin, TX. Evan G. Cooch is in the Department of Natural
Resources & the Environment, Cornell University, Ithaca, NY.

M. B. Hooten & E. G. Cooch (2019) Comparing Ecological Models. In, Quantitative Analysis in Wildlife Science (L. A. Brennan, A. N. Tri & B. C.
Marcot, eds.), pp. 63-76. Johns Hopkins University Press, Baltimore, USA.



Hooten & Cooch

score would depend on the way we measured distance. We
can address the first issue by collecting two data sets – one
for fitting the model and one for validating the model. If
the validation data set is large enough, it will provide an
accurate representation of the predictive ability. The second
issue is impossible to resolve without setting some ground
rules. Thus, statisticians have traditionally recommended
scoring functions that are based on distances inherent to
the type of statistical model being used for inference. Such
scores are referred to as proper scores (Gneiting and Raftery,
2007).

The deviance is a proper score (also referred to as
the logarithmic score; Gneiting and Raftery, 2007). It is
proper because it involves the likelihood associated with the
chosen statistical model (i.e., hypothesized mechanism that
gives rise to the data). The deviance is usually expressed
as 𝐷 (y) = −2 log 𝑓 (y|𝜷), which involves a function 𝑓

representing the likelihood evaluated for the data based on
the model parameters 𝜷 ≡ (𝛽1, . . . , 𝛽𝑝)′. The−2 multiplier
in the deviance is used to be consistent with historical
literature and implies that smaller scores indicate better
predictive ability. There are other types of proper scoring
functions, but because the deviance is one of the most
commonly used scores, we focus on it throughout.

Validation

It is tempting to use the within-sample data y to score a
model based on the deviance 𝐷 (y). However, the score will
be “optimistic” about the predictive ability of the model
because we learned about the parameters in the model
using the same set of data (Hastie et al., 2009). “Optimism”
is a term commonly used by statisticians to refer to an
artificially inflated estimate of true predictive ability. This
idea is easily understood by considering a data set with
𝑛 data points, to which we wish to fit models containing
as many as 𝑝 predictor variables. Using a familiar least-
squares approach, we seek to minimize residual sums of
squares (RSS), a commonly used objective function in linear
regression. However, the RSS will decrease monotonically
as the number of parameters increases (often characterized
by an increase in the calculated 𝑅2 for the model). While this
may seem like a positive outcome, there are two important
problems. First, a low RSS (or high 𝑅2) indicates the model
has low error with respect to the sample data (sometimes
referred to as the “training” data), when our interest is in
choosing a model that has a low error when predicting out-of-
sample data (validation or “test” data). Coefficient estimates
will be unbiased and, if 𝑛 ≫ 𝑝, coefficient estimates will

have low variance. However, as 𝑝 → 𝑛, there will be a
substantial increase in variance. In the extreme, where
𝑝 ≥ 𝑛, the variance of the coefficient is infinite, even though
𝑅2 ≈ 1. Second, if the criterion for model selection is based
solely on minimizing RSS in the training data (in the least
squares context; equivalently, minimizing deviance in a
likelihood framework), then the model containing all 𝑝
parameters would always be selected. In fact, we want to
select a model with good ability to predict the response
outside the sample (i.e., we seek low test error).

Formally, the preceding relates to what is known as the
bias-variance tradeoff. As a model becomes complex (more
parameters), bias decreases, but variance of the estimates
of parameter coefficients increases. Following Hastie et
al. (2009), we illustrate the basis for this relationship by
proposing that a response variable 𝑦 can be modeled as
𝑦 = 𝑔(x) + 𝜖 . The corresponding expected prediction error
can be written as 𝐸 ((𝑦 − 𝑔̂(x))2). If 𝑔̂(x) is the prediction
based on the within-sample data then

𝐸
(
(𝑦 − 𝑔̂(x)))2 = 𝜎2 + (𝐸 (𝑔̂(x)) − 𝑔(x)))2 + var(𝑔̂(x))

= irreducible error + bias2 + variance

The first term, irreducible error, represents the uncertainty
associated with the true relationship that cannot be reduced
by any model. In effect, the irreducible error is a constant in
the expression. Thus, for a given prediction error, there is
an explicit trade-off between minimizing the variance and
minimizing the bias (i.e., if one goes down, the other goes
up).

Out-of-sample validation helps control for optimism by
using separate procedures for fitting and scoring models.
Out-of-sample validation corresponds to calculating the
score for the out-of-sample data. In the case where two
data sets (i.e., training and validation data) are available,
then the deviance can be calculated for each model using
plug-in values for the parameters based on the point
estimates 𝜷̂ from a model fit to y. Thus, for a set of models
M1, . . . ,M𝑙 , . . . ,M𝐿 , we calculate 𝐷𝑙 (y𝑢) and compare
to assess predictive performance (lower is better).

A completely independent second data set is not often
available to use for validation. In that case, cross-validation
can be useful to recycle within-sample data for scoring.
In cross-validation, the data set is split into two parts – a
temporary validation data set y𝑘 and a temporary training
data set y−𝑘 (where the −𝑘 subscript refers to the remaining
set of data from y after the 𝑘th subset is held out). For each
“fold” of training data y−𝑘 , we fit model 𝑙 and calculate
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the score 𝐷𝑙 (y𝑘) for the validation data set. After we have
iterated through all 𝐾 folds, we compute the joint score as∑𝐾
𝑘=1 𝐷𝑙 (y𝑘) and compare among the 𝐿 models to assess

predictive ability.

Cross-validation is an appealing method because it
automatically accounts for optimism and can be used in
almost any setting without requiring a separate set of
validation data. However, it is based on a finite set of data
and includes a circular procedure because, presumably, the
best predicting model identified in the comparison would
then be fit to the entire data set for final inference and/or
additional prediction. Furthermore, cross-validation can be
computationally intensive if the fitting algorithms require
substantial computing resources. In modern computing
environments, the computational burden is less of an issue
than it was decades ago, but the cross-validation procedure
(i.e., looping over the set of folds and models) can require
slightly more of an overhead programming investment.

Species Richness: Cross-Validation

As a case study,we consider the continental U.S. bird species
richness (Figure 4.1) as a function of state-level covariates
throughout this chapter. Suppose that we wish to model the
bird counts (𝑦𝑖) by U.S. state based on a set of state-level
covariates x𝑖 , for 𝑖 = 1, . . . , 𝑛 where 𝑛 = 49 continental
states in the Unite States (including Washington D.C.)
and the covariates are: state area (sq. km / 1000), average
temperature (average degrees F), and average precipitation
(average inches per year) (Figure 4.1).

Because the data 𝑦𝑖 are non-negative integers, a
reasonable starting place for a data model for 𝑦𝑖 is the
Poisson distribution such that

𝑦𝑖 ∼ Pois(𝜆𝑖) . (4.1)

We link the mean richness (𝜆𝑖; also known as “intensity”) to
the covariates (𝑥𝑖) and regression coefficients (𝛽0, . . . , 𝛽𝑝)
using a log link function

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥1,𝑖 + . . . + 𝛽𝑝𝑥𝑝,𝑖 , (4.2)

for a set of covariates (𝑥 𝑗 ,𝑖 , 𝑗 = 1, . . . , 𝑝). It is common to
see the regression part of the model written as log(𝜆𝑖) =
𝛽0 + x′

𝑖
𝜷 or log(𝜆𝑖) = x′

𝑖
𝜷, depending on whether the

intercept is included in 𝜷 (in the latter case, the first element
of vector x𝑖 is 1).

The set of models we seek to compare are:

1. null model with only an intercept (no covariates)

2. intercept and area as covariate

3. intercept and temperature as covariate

4. intercept and precipitation as covariate

5. intercept and area and temperature as covariates

Note that we excluded models with both state area and
precipitation because they are strongly negatively correlated
(𝑟 = −0.63). We also excluded models containing
both temperature and precipitation because of moderate
collinearity (𝑟 = 0.48). Substantial multicollinearity among
covariates can cause regression models to be unstable
(i.e., “irregular”, more on this in what follows) and result
in misleading inference (Christensen, 2002; Kutner et al.,
2004). Furthermore, we scaled the covariates to have mean
zero and variance one before conducting all analysis.

In this case, because we had 49 observations, we used
7-fold cross-validation, breaking the data up into seven
subsets. For each fold, we fit the models to 6/7ths of the data
and computed the validation score (i.e., deviance) for the
remaining 1/7th of the data (summing over all folds). The
resulting deviance score, calculated using cross-validation∑7
𝑘=1 𝐷𝑙 (y𝑘), for each of our five models (𝑙 = 1, . . . , 5)

was 762.8, 597.1, 687.8, 755.4, and 551.5, respectively. The
cross-validation scores indicated that models 5 and 2, both
containing the ‘area’ covariate, perform best for prediction
because they have the lowest cross-validation scores.

Information Criterion

The inherent challenges associated with scoring models
based on out-of-sample validation and cross-validation
inspired several developments that control for optimism
based only on within-sample data. In the maximum
likelihood paradigm for specifying and fitting statistical
models to data, two scoring approaches have been
popularized: Akaike’s Information Criterion (AIC; e.g.,
Akaike, 1983; Burnham and Anderson, 2002) and Bayes
Information Criterion (BIC; e.g., Schwartz, 1978; Link and
Barker, 2006). They are both similar in that they depend
on the deviance as a primary component of the score,
and they account for optimism in the predictive ability by
penalizing the deviance based on attributes of the model or
data collection process. Because smaller deviance indicates
a better score, AIC and BIC penalize the score by adding
a positive term to the deviance. For AIC, we calculate the
score as 𝐷 (y) + 2𝑝, where 𝑝 is the number of unknown
parameters 𝜷 in the model. The score for BIC is calculated
similarly as 𝐷 (y) + 2 log(𝑛), with 𝑛 corresponding to the
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Figure 4.1: Bird species richness in the continental U.S. and covariates: State area, average annual temperature, average
annual precipitation.

dimension of the data set y (i.e., the sample size). Note that
as log(𝑛) becomes larger than two, the penalty will have
more influence on the score in BIC than AIC

Within-sample scores are referred to as information
criteria because the derivation of their penalties corresponds
to certain aspects of information theory. Information
theory arose from early work in signal processing and
seeks to account for the information content in data. A
related concept is “entropy”, a commonly used measure of
uncertainty in information theory (Akaike, 1985). Given
that statistics allows us to model data using probability
distributions, information theory is concerned with how
close the probability distribution we used to model the data
is to the truth (Burnham and Anderson, 2002). While it
is impossible to calculate the distance between our model
and the truth when it is unknown, the penalty used in AIC
allows us to compare among a set of models to assess which
is closest to the truth (with the lowest score indicating the
closest). Conveniently, a separate derivation of the AIC

penalty showed that it can also identify the best predicting
model in certain circumstances (Stone, 1977). Critically, the
AIC penalty (2𝑝) is a function of the number of unknown
model parameters. Thus, complex models are penalized
more than simpler ones. The concept of Occam’s razor
indicates that there is a sweet spot in model complexity that
provides the best out-of-sample predictive ability (Madigan
and Raftery, 1994), with highly parameterized models being
poorer predictors in limited data situations. Thus, it is often
said that information criteria seek to balance model fit (to in-
sample data) with parsimony (reducing model complexity
to control for optimism in predictive ability).

The BIC score was derived with a different goal in mind
than that of AIC. Under certain conditions,BIC identifies the
data-generating model out of a set of models that includes the
truth. It is also naturally a good score to use for calculating
weights for model averaging, again, under certain conditions
(Link and Barker, 2006). Both AIC and BIC tend to rank
models similarly when there are large gaps in the model
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Table 4.1: Likelihood-based information criteria and coefficient point estimates.

Model AIC BIC Intercept Area Temp Precip
1 741.1 743.0 5.761 – – –
2 571.2 575.0 5.755 0.100 – –
3 669.2 673.0 5.758 – 0.069 –
4 706.1 709.8 5.759 – – −0.049
5 526.7 532.4 5.754 0.092 0.055 –

performance, but AIC will select more complex models in
general when the differences among models are small.

Species Richness: Information Criteria

Recall that AIC is defined as AIC = 𝐷 (y) + 2𝑝 (based
on the plug-in point estimates 𝜷̂), where 𝑝 is the number
of model parameters (𝑝 is equal to 1, 2, 2, 2, 3 for our
five models, respectively). Similarly, BIC is defined as
BIC = 𝐷 (y) + 2 log(𝑛), where 𝑛 = 49 for our case study.
For our models, the deviance is calculated as

𝐷 (y) = −2
𝑛∑︁
𝑖=1

log
(
Pois(𝑦𝑖 | exp(𝛽0 + 𝛽1𝑥1,𝑖

+ · · · + 𝛽𝑝𝑥𝑝,𝑖))
)
,

(4.3)

where “Pois” stands for the Poisson probability mass
function. We calculated AIC and BIC for each of our five
models (Table 4.1).

The results indicate that AIC and BIC are similar
and agree on the ranking of the models. The information
criteria also agree with the results of the cross-validation,
in that models 5 and 2 are the top two models for our data.
Across all models, the intercept was fairly consistent and the
estimated coefficients for the “area” and “temp” predictor
variables were positive while that for “precip” was negative.
These results imply that increases in state area and average
temperature predict higher bird species richness, while an
increase in average precipitation predicts lower bird species
richness.

Regularization

The concept of penalizing complex models to account for
optimism and improve predictive ability is much more
general than the way in which it is used in AIC and BIC.
Regularization is a type of penalization that allows users
to choose a penalty that suits their goals and meshes well
with their perspective about how the world works. A general
scoring expression is𝐷 (y)+𝑎∑𝑘

𝑗=1 |𝛽 𝑗 |𝑏, where 𝑎 and 𝑏 are

regularization parameters that affect the type and strength
of penalty. Because the user can set 𝑏, there are infinitely
many regularization forms, but the two most commonly
used are the “ridge” penalty (𝑏 = 2, equation 4.4a; Hoerl
and Kennard, 1976) and the “lasso” penalty (𝑏 = 1,
equation 4.4b; Tibshirani, 1996):

𝐷 (y) + 𝑎
𝑘∑︁
𝑗=1

|𝛽 𝑗 |2 ridge penalty, (4.4a)

𝐷 (y) + 𝑎
𝑘∑︁
𝑗=1

|𝛽 𝑗 | lasso penalty. (4.4b)

It is intuitive to view these penalties geometrically
(Figure 4.2). For example, in the case where a model has
two parameters, we can view the penalty as a shape in two-
dimensional parameter space. Consider all possible values
that the parameters 𝛽1 and 𝛽2 can assume in the space
depicted in Figure 4.2. When the model is fit to a particular
data set without any penalization, the point estimate 𝜷̂ will
fall somewhere in this space (the lower right quadrant in
the example shown in Figure 4.2). When penalized, the
estimates will be “shrunk” toward zero by some amount
controlled by the penalty.

The ridge penalty (𝑏 = 2) is represented as a circle with
its radius being a function of the regularization parameter
𝑎. The lasso penalty (𝑏 = 1) is represented as a diamond
where the area is a function of the regularization parameter
𝑎. For more than two parameters, the constraint shapes
become higher dimensional (e.g., spheres and boxes for
𝑝 = 3). Note that the lasso constraint has corners and the
ridge constraint is smooth. These features play an important
role in the penalization. The penalized parameter estimates
are snapped back a point on the shape (i.e., where the error
ellipses intersect with the shape of the particular constraint
function).

The ridge and lasso coefficient estimates represent a
compromise between the model fit to the available data
and a penalty to account for optimistic predictive ability.
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Figure 4.2: Ridge penalty (gray circle, 𝑏 = 2) and lasso penalty (gray diamond, 𝑏 = 1) with three point estimates in
parameter space for a model with 2 parameters (𝛽1, 𝛽2): the unpenalized estimate (𝜷̂), the ridge estimate (𝜷̂ridge), and
the lasso estimate (𝜷̂lasso). The arrows indicate the shrinkage induced by the penalty in each case. The ellipses represent
contours of the distribution for the unpenalized estimate (𝜷̂).

The strength of the penalty is induced by the regularization
parameter 𝑎. As 𝑎 increases, the shapes shrink in size (i.e.,
distance between the edge and the origin decreases), taking
the penalized parameter estimates with them. Notice that, as
the regularization parameter 𝑎 increases past a certain point,
the lasso-penalized estimate will shrink to exactly zero for
one of the parameters, whereas the ridge-penalized estimate
will only shrink toward zero but at an asymptotic rate never
reaching zero exactly until 𝑎 → ∞. These trajectories are a
result of simple geometry. The sharp corners of the lasso
penalty imply that the lasso estimates will more likely fall
on a point of the diamond shape, which means that one of
the two parameters will be estimated as zero (effectively
removing that effect from the model, as in Figure 4.2 where
𝛽lasso,2 = 0). By contrast, the ridge penalty will shrink all
parameters in the model, but not to zero unless 𝑎 → ∞.

The application of these differences in shrinkage
trajectory represents the user perspective about the world.
In the case of lasso, when certain parameters are set to zero
by the penalty, they are effectively removed from the model,
making the model discretely less complex. By contrast,
the ridge estimates leave all parameters in the model, but
reduce their influence appropriately. Some have argued
that the ridge penalty better mimics the real world because
everything is affected by everything else, even if only by
an infinitesimal amount, although this may complicate the
interpretability of the model. However, lasso regularization
has other beneficial properties, such as retaining sparsity

in the parameter space (by forcing some parameters to be
zero) and it has become popular (Tibshirani, 1996).

Regularization can also help alleviate the effects
of multicollinearity on inference. When covariates are
highly correlated (i.e., collinear), the associated coefficient
estimates will often oppose each other (i.e., one gets large
and the other gets small) because they are effectively
fighting over the same type of variability in the data. In
extreme collinearity cases, the parameter estimates can
oppose each other strongly. Regularization shrinks the
parameter estimates toward zero, thereby reducing the
effects of collinearity. The resulting regularized estimates
are technically biased, but have much lower variability.
Ridge regression was developed for precisely this purpose.
The term “regularization” is so named because it induces
regularity in models (Hoerl and Kennard, 1976). Because
regular models have fewer parameters than data and do
not have highly collinear predictor variables, regularization
helps with both cases.

The catch with regularization is that the user has to
choose the parameters 𝑎 and 𝑏. The shape parameter
𝑏 is often chosen based on the goals of the study and
the desired type of shrinkage, but the strength parameter
𝑎 is not as easy to set. In principle, it would be most
satisfying to formally estimate 𝑎 along with the other model
parameters 𝜷. However, the within-sample data do not
carry enough information to estimate 𝑎 by themselves.
Thus, 𝑎 is typically set based on how well it improves the
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predictive ability of the model for out-of-sample data using
the same validation or cross-validation techniques described
in the previous section. We illustrate the cross-validation
approach to regularization and finding an optimal value
for 𝑎 in what follows. The shape parameter 𝑏 can also be
chosen using cross-validation alone, or it can be selected a
priori depending on whether the user wants some parameter
estimates to be set to zero if necessary.

Species Richness: Regularization

Regularization allows for the comparison of an infinite set
of models because we can include all covariates and let the
penalty shrink them toward zero based on cross-validation.
We fitted both ridge and lasso Poisson regression to the bird
richness data set using values of 𝑎 ranging from 0 to 100.
We included a simulated covariate (“sim”) that is strongly
correlated with the “area” covariate to demonstrate the
differences among coefficient estimate trajectories for the
real versus simulated covariates. The resulting trajectories
and cross-validation scores are shown in Figure 4.3.

Both types of regularization, ridge and lasso, shrink
the coefficient estimate for the simulated covariate (“sim”)
to zero faster than the others. The simulated covariate is
shrunk exactly to zero by lasso, immediately resulting in
the optimal model for prediction. With the ridge penalty,
the coefficient estimate for the simulated covariate actually
changes sign (from negative to positive) but ends up near
zero in the optimal model for prediction. The regularization
results in larger effects for the real covariates for both ridge
and lasso. Between the two types of penalties, the resulting
optimal score for the ridge penalty was better (542.7) than
the score for lasso (544.2).

Scoring Bayesian Models
Posterior Predictions

Bayesian statistics are similar to likelihood-based statistics
in that a parametric probability distribution is chosen as a
model for the data. The difference is that parameters are
treated as unobserved random variables in Bayesian models,
as opposed to fixed and known variables in non-Bayesian
models (Hobbs and Hooten, 2015). We use conditional
probability statements to find the probability distribution
of unknown variables (i.e., parameters and predictions)
given known variables (i.e., data). Thus, if we treat our
model parameters 𝜷 as random variables with distribution
𝑓 (𝜷) before the data are observed, our Bayesian goal is
to find the posterior distribution 𝑓 (𝜷|y) after the data

are observed. Using conditional probability, we find that
the posterior distribution is 𝑓 (𝜷|y) = 𝑓 (y|𝜷) 𝑓 (𝜷)/ 𝑓 (y),
which is a function of likelihood 𝑓 (y|𝜷), the prior 𝑓 (𝜷), and
the marginal distribution of the data 𝑓 (y) in the denominator
(Hobbs and Hooten, 2015). The marginal distribution of the
data is often the crux in solving for the posterior distribution
because it usually involves a complicated integral or sum.
Therefore, we use numerical approaches such as Markov
chain Monte Carlo (MCMC) algorithms for approximating
the posterior distribution and associated quantities (Gelfand
and Smith, 1990).

The Bayesian mechanism for prediction is the posterior
predictive distribution 𝑓 (y𝑢 |y). Bayesian point predictions
can be calculated by ŷ𝑢 =

∑𝑇
𝑡=1 y(𝑡 )

𝑢 /𝑇 (i.e., the mean of the
posterior predictive distribution) using posterior predictive
samples y(𝑡 )

𝑢 arising from the MCMC model-fitting
algorithm. However, the posterior predictive distribution
provides much more information about the unobserved
data as well, such as the uncertainty in our predictions.
Thus, while it is tempting to use only the point predictions,
we can obtain a much deeper understanding of what we
know, and do not know, about the things we seek to predict
using additional characteristics from the posterior predictive
distribution.

Scoring Bayesian Models

In principle, the same concept of scoring described
in previous sections can be applied to Bayesian point
predictions (Vehtari and Ojanen, 2012). In this case, the
deviance can be calculated using the same likelihood as in
the non-Bayesian models but with Bayesian point estimates
as plug-in values for the parameters 𝜷. Alternatively, we
can leverage one of the key benefits that comes for free
with MCMC; namely, the ability to obtain inference for
any function of model components (e.g., data, predictions,
and parameters). Therefore, a natural Bayesian score would
be the mean posterior predictive deviance 𝐷̄ (y𝑢), which
can be calculated using MCMC samples as

∑𝑇
𝑡=1 𝐷 (y(𝑡 )

𝑢 )/𝑇 ,
where 𝑡 corresponds to an iteration and𝑇 is the total number
of MCMC iterations. The posterior predictive distribution
provides the Bayesian mechanism for obtaining predictions
from a model. Thus, because the deviance can be calculated
using predictions, we treat it as a derived quantity (i.e., a
statistic that does not affect model fit, but that is a function
of predictions or parameters in the model). MCMC makes
it easy to obtain an estimate of this statistic which becomes
the score for our model. Calculating this new score using
Bayesian methods, we can compare models as before based
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Figure 4.3: Poisson regression coefficient estimate (𝜷̂) trajectories (top panels) based on the ridge penalty (left panels; 𝑏 = 2)
and lasso penalty (right panels; 𝑏 = 1). Regularization score trajectories (bottom panels) based on cross-validation.
Vertical gray lines represent the values for the strength parameter 𝑎 based on the optimal scores.

on out-of-sample data or cross-validation to account for
optimism.

Bayesian models may require more time to fit than non-
Bayesian models. Although Bayesian models can provide
richer forms of inference, cross-validation may become
infeasible for very large data sets and/or complex Bayesian
models. Thus, within-sample scoring methods for Bayesian
models have been developed. The most commonly used
within-sample score for Bayesian models is the deviance
information criterion (DIC; Spiegelhalter et al., 2002;
Celeux et al., 2006). DIC takes the same form as AIC, with
the deviance based on a plug-in Bayesian point estimate
for 𝜷, plus a penalty. The DIC penalty is 2𝑝𝐷 , with 𝑝𝐷
representing the effective number of parameters. It is not
possible to count parameters discretely in Bayesian models
because the prior provides some information about model

parameters. Thus, instead we can think of a measure for
model complexity (i.e., the optimism) as the difference in
score between the deviance that accounts for the uncertainty
in model parameters (𝐷̄) and the deviance based on only the
plug-in parameter estimates (𝐷̂), resulting in 𝑝𝐷 = 𝐷̄ − 𝐷̂.
As it turns out, for simple models, 𝑝𝐷 is close to the number
of parameters 𝑝 when priors are less informative.

An alternative Bayesian score based on within-
sample data uses the posterior predictive distribution
directly (Richardson, 2002; Watanabe, 2010). The so-called
Watanabe-Akaike information criterion (WAIC; Watanabe,
2013) substitutes in the logarithm of the posterior predictive
density for the deviance and uses a different calculation for
the penalty. Thus, WAIC is specified as −2 log 𝑓 (y|y) +
2𝑝𝐷 . Using MCMC samples, WAIC can be calculated
as −2

∑𝑛
𝑖=1 log

∑𝑇
𝑡=1 𝑓 (𝑦𝑖 |𝜷 (𝑡 ) )/𝑇 + 2𝑝𝐷 , where 𝑝𝐷 =
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∑𝑛
𝑖=1 var(log 𝑓 (y 𝑗 |𝜷)) and the “var” corresponds to the

variance over the posterior distribution for 𝜷. Heuristically,
WAIC balances fit with parsimony to improve predictive
ability because the uncertainty will increase as the model
complexity increases. Thus, as the posterior variance of the
deviance increases, the model is penalized more.

Species Richness: Bayesian Information Criteria

Recall that DIC is defined as DIC = 𝐷̂ + 2𝑝𝐷 , for
𝑝𝐷 = 𝐷̄ − 𝐷̂. These different forms of deviance can be
computed using MCMC output from our model using

𝐷̂ = −2
𝑛∑︁
𝑖=1

log
(
Pois(𝑦𝑖 |𝜆̂𝑖)

)
(4.5)

and

𝐷 = −2
©­­«
∑𝑇
𝑡=1

∑𝑛
𝑖=1 log

(
Pois(𝑦𝑖 | exp(𝛽 (𝑡 )0

+ 𝛽 (𝑡 )1 𝑥1,𝑖 + . . . + 𝛽 (𝑡 )𝑝 𝑥𝑝,𝑖)
)

𝑇

ª®®¬ , (4.6)

where 𝜆̂𝑖 is the posterior mean of 𝜆 and 𝛽
(𝑡 )
𝑗

is the 𝑗 th

coefficient on the tth MCMC iteration (for 𝑗 = 1, . . . , 𝑝 and
and MCMC sample size 𝑇 .)

Similarly, the Watanabe-Akaike information criterion
is

WAIC = −2
𝑛∑︁
𝑖=1

lppd𝑖 + 2𝑝𝐷 , (4.7)

where “lppd” stands for log posterior predictive density for
𝑦𝑖 and can be calculated using MCMC as

©­­«
∑𝑇
𝑡=1 Pois(𝑦𝑖 | exp(𝛽 (𝑡 )0
+ 𝛽 (𝑡 )1 𝑥1,𝑖 + . . . + 𝛽 (𝑡 )𝑝 𝑥𝑝,𝑖))

𝑇

ª®®¬ , (4.8)

and where Gelman and Vehtari (2014) recommend
calculating 𝑝𝐷 as

𝑝𝐷 =

𝑛∑︁
𝑖=1

(∑𝑇
𝑡=1 (log(Pois) (𝑡 )

𝑖
− ∑𝑇

𝑡=1 log(Pois) (𝑡 )
𝑖

/𝑇)2

𝑇

)
,

(4.9)

where

log(Pois) (𝑡 )
𝑖

= log
(
Pois(𝑦𝑖 | exp(𝛽 (𝑡 )0 + 𝛽 (𝑡 )1 𝑥1,𝑖

+ . . . + 𝛽 (𝑡 )𝑝 𝑥𝑝,𝑖)
)
.

To specify a Bayesian model for the bird species richness
data, we used the same Poisson likelihood as previously
and then specified priors for the parameters. A reasonable
prior for unconstrained regression coefficients is Gaussian
(because the support for 𝛽 𝑗 includes all real numbers). Thus
we specify

𝛽 𝑗 ∼ N(𝜇 𝑗 , 𝜎2
𝑗 ) for 𝑗 = 1, . . . , 𝑝 , (4.10)

as priors with means 𝜇 𝑗 = 0 and variances 𝜎2
𝑗
= 100. Using

these priors, we fit each of our models to the bird richness
data and calculated DIC and WAIC (Table 4.2).

Table 4.2: Bayesian information criteria table.

Model DIC WAIC
1 741.2 748.4
2 571.3 577.4
3 669.2 680.1
4 706.1 720.3
5 526.7 533.8

While the values for DIC and WAIC are different, the
ordering of models remains the same and is consistent with
the non-Bayesian information criteria (although that may
not always be true). Again, we see that models 5 and 2
provide the best predictive ability among our set of five
models.

Bayesian Regularization

Comparing Bayesian models is not limited to use with out-
of-sample scoring and information criteria. The concept
of regularization also naturally transfers to the Bayesian
setting (Hooten and Hobbs, 2015). In fact, the regularization
penalty already exists in Bayesian models as the prior. To see
this connection, notice that the logarithm of the numerator
in conditional probability is: log( 𝑓 (y|𝜷)) + log( 𝑓 (𝜷)).
Thus, multiplying by −2, we have the same regularization
expression as in previous sections, but with the penalty
equal to −2 log( 𝑓 (𝜷)). Therefore, the penalty is a function
of the prior.

In regression models, the most common prior for the
coefficients is a normal distribution. If we let the prior for
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the intercept be 𝛽0 ∼ N(0, 𝜎2
0 ) and the prior for the slope

coefficients be 𝛽 𝑗 ∼ N(0, 𝜎2
𝛽
), then the regularization shape

parameter is 𝑏 = 2 (as in ridge regression) and the strength
of the penalty 𝑎 is proportional to the reciprocal of prior
variance (1/𝜎2

𝛽
; Hooten and Hobbs, 2015). Thus, to induce

a stronger penalty, we simply make the prior variance for
the slope coefficients small, hence shrinking the posterior
for the slope coefficients toward zero. To choose the optimal
value for 𝜎2

𝛽
, we can perform cross-validation (or out-of-

sample validation), as before, to improve predictive ability
of the model (Watanabe, 2010).

The Bayesian regularization procedure can be used
with a suite of different model specifications that involve
regression components (e.g., logistic regression, Poisson
regression, occupancy models, capture-recapture models;
Hooten and Hobbs, 2015). Different regularization penalties
can be imposed by using different priors. For example, using
a double exponential prior for 𝛽 𝑗 instead of a Gaussian prior
results in a Bayesian lasso penalty (Park and Casella, 2008;
Kyung et al., 2010). The only potential disadvantage is
that a Bayesian regularization procedure may involve more
computation than fitting the model a single time when cross-
validation is applied and the regularization is tuned. Even so,
when fitting many types of models on modern computers,
Bayesian regularization is feasible. Alternatively, strong
priors that are set in the traditional way, using preexisting
scientific knowledge about the process, may be enough to
facilitate a natural Bayesian regularization without requiring
an iterative model fitting procedure (Seaman et al., 2012).

Discussion

We presented several different approaches for comparing
parametric statistical models in this chapter. Our focus was
mainly on comparing models with respect to predictive
ability, but not all of the methods are designed to be
optimal for prediction in the same sense. For example,
BIC is more closely related to model averaging, and model
averaged predictions outperform the predictions from any
one model alone. Thus, multimodel inference can refer to
a comparison of models based on predictive ability or an
explicit combination of models to improve desired inference.

Any probability distributions (e.g., predictive distri-
butions) can be averaged to form a new distribution, but
the weights with which to average them are not unique
and any one set of weights is optimal only under certain
circumstances. Bayesian methods provide the most coherent
justification for model averaging because the optimal
weights have been shown to equal the posterior model

probabilities, 𝑃(M𝑙 |y), for 𝑙 = 1, . . . , 𝐿 (Hoeting et al.,
1999; Hooten and Hobbs, 2015). The posterior model
probability blends information from the model and data with
a prior understanding of model suitability. Posterior model
probabilities can be calculated easily for some Bayesian
models, but they are intractable for others. Thus, BIC was
developed to be used for computing the optimal model
averaging weights under certain conditions (equal prior
model probabilities and flat prior distributions; Schwarz
1978).

The model averaging weights associated with BIC
are proportional to 𝑒−BIC𝑙/2, where BIC𝑙 is the Bayesian
information criterion calculated for model M𝑙 . Burnham
and Anderson (2002) suggested replacing BIC𝑙 with AIC𝑙
and using it in a non-Bayesian context to model average
parameter estimates and predictions, a practice that has
become popular in wildlife biology and ecology. However,
model averaging should be performed only for quantities that
do not change in their interpretation across models (Cade,
2015; Banner and Higgs,2017). Regression parameters have
different interpretations among models unless the predictor
variables are uncorrelated; they are interpreted conditional
on the other parameters in the model. However, predictions
of data always have the same interpretation in models, so
they can be safely averaged for final inference (Burnham
and Anderson, 2002; Burnham and Anderson, 2004).

To illustrate model comparison based on predictive
ability, we employed a Poisson GLM for count data and
compared a set of five models including a variety of
covariates. Across all methods we demonstrated, state area
always appeared in the best predicting model. However, all
of the covariates improve predictive ability beyond the null
model (i.e., intercept only). In the models we considered,
the information criteria provided similar insights as cross-
validation, and the non-Bayesian information criteria agreed
with the Bayesian approaches. This occurred because we
used relatively vague priors for the regression coefficients,
and thus, the information content from the data was
approximately the same across models.

The regularization approaches also provided similar
results for our data. However, while lasso immediately
shrunk the simulated covariate to zero, ridge regression
shrunk this covariate, and the others, more slowly. In this
particular case, the smoothness of the trajectory allowed the
regularization procedure to find a better predicting model
(out of infinite possibilities) under the ridge penalty.

The algorithms required to fit the specific models we
presented in this chapter, and its relatively small example
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data set, yielded nearly immediate results in all cases.
However, for larger data sets, the cross-validation and
Bayesian approaches may require more time to implement.
Still, we used readily available software to fit all models,
and nested model-fitting commands within for loops to
perform cross-validation when necessary. With modern
computing resources and easy parallel computing, cross-
validation can be sped up substantially with minimal extra
effort, so the added computational burden is not nearly
as limiting as it was in the past. However, while cross-
validation automatically accounts for optimism in scoring
predictive ability, it still depends on the initial data set and is
limited in representing true out-of-sample predictive ability.

Finally, Ver Hoef and Boveng (2015) argue that there are
valid situations that call for the use of a single, well-designed
model that best represents the scientist’s understanding of
the ecological mechanisms and data collection process.
In such cases, the emphasis is not on predictive ability,
but rather on gaining a better understanding of the model
components. A model component may be a simple
population mean that is unknown, such as the average
biomass in a survey plot, or it could be the true animal
abundance in a closed study area. In these cases, we have no
need for model comparison because the desired inference
is clear and the study design can be customized to answer
these questions.
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