
 

Journal of Applied Ecology

 

 2009, 

 

46

 

, 486–492 doi: 10.1111/j.1365-2664.2008.01597.x

 

© 2008 The Authors. Journal compilation © 2008 British Ecological Society

 

Blackwell Publishing Ltd

 

METHODOLOGICAL INSIGHTS

 

Multistate capture–recapture analysis under imperfect 

state observation: an application to disease models

 

Paul B. Conn

 

1,

 

* and Evan G. Cooch

 

2

 

1

 

Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA; and 

 

2

 

Department of 

 

Natural Resources, Fernow Hall, Cornell University, Ithaca, NY 14853, USA

 

Summary

 

1.

 

Multistate capture–recapture models are frequently used to estimate the survival and state
transition parameters needed to parameterize stage-structured population models, tools that are
important for conservation and management. Typically, such models assume that all encountered
individuals can be assigned to a particular state without error or ambiguity, a requirement which is
difficult to meet in practice. Model extensions to relax this assumption would increase the richness
of ecological data sets available for estimating life-history and stage-transition parameters with
multistate models.

 

2.

 

One relatively common analytical approach when confronted with ambiguity in state determi-
nation is to censor all encounters where the state of an animal cannot be ascertained. Here, we
present an alternative approach, which uses a hidden Markov (or multievent) modelling framework
that can incorporate data from encounters of unknown state. Using simulation, we show that our
approach leads to estimators of  state-specific survival and transition probabilities that are more
precise, and sometimes considerably so, than methods based on censoring.

 

3.

 

We demonstrate our approach using field data from a study of the dynamics of conjunctivitis in
the house finch 

 

Carpodacus mexicanus

 

 Müller. A fundamental challenge in modelling disease
dynamics involves the estimation of the rates of entry and exit from one or more disease states,
which can be complicated when disease state is uncertain. We show that incorporating data from
unknown states made substantial improvements to parameter precision.

 

4.

 

Synthesis and applications

 

. Missing or incomplete records are an unfortunate but common
feature of many ecological field studies, often diminishing the quality and quantity of data. Our
approach of treating state as a hidden Markov process allows such records to be used, increasing the
precision of survival and state transition parameters in multistate mark–recapture studies. Our approach
is more general than other approaches in the literature, and does not require specialized sampling
designs or ancillary information to inform state assignment. We suggest that ecologists consider
using this modelling approach instead of censoring records whenever state information is missing.
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Introduction

 

Ecologists frequently use age- or stage-structured models to
project populations into the future and to investigate the
consequences of management actions. When the detection
probability of  animals is imperfect, multistate capture–
mark–reencounter (MSMR) studies (Arnason 1972;

Hestbeck, Nichols & Malecki 1991; Brownie 

 

et al

 

. 1993;
Schwarz, Schweigert & Arnason 1993) provide a natural
framework for estimating the state-transition and apparent
survival parameters needed to parameterize stage-structured
population models (Nichols 

 

et al

 

. 1992).
One of  the most basic data requirements for MSMR

models is that the true state of each sampled individual is
known. If  only a small percentage of  observations do not
conform to this requirement, they may be censored without
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causing bias or diminishing precision to any great degree. On
the other hand, when state is difficult to determine, the
number of records that must be deleted may be quite high,
resulting in imprecise parameter estimates. For instance, age
or size class, sex, breeding status, or disease state may be
difficult to determine in the field, particularly when individuals
are observed at a distance.

Imperfect state assignment can arise from at least two,
not mutually exclusive sources (Fig. 1). In some cases, all
encountered individuals are assigned a state, but the state
assignment process is subject to error. This is generally
referred to as ‘misclassification error’. When the state of an
animal that is captured is misclassified, the potential for bias
in transition probabilities as well as all other parameters
arises. Estimated differences in survival between states
could be underestimated. As with other biases, those due to
misclassification could certainly bias projections of population
change from matrix population models (Caswell 2001).
Lebreton & Pradel (2002) and Kendall (2008) have outlined
the problem of misclassified states. In addition to potential
for biased parameter estimates, they also pointed out that
without additional information, parameter redundancy
problems would arise, such that some key parameters
would be inestimable. Fujiwara & Caswell (2002) modelled
misclassification and adjusted for it by incorporating fixed
misclassification probabilities derived outside the capture–
mark–recapture modelling process. Runge, Hines & Nichols
(2007) developed an approach for measuring species-specific
parameters when species may be misclassified and a subsample
of  marked animals are used to estimate classification
probabilities. Similarly, Royle & Link (2005, 2006) used
multinomial mixtures to account for misclassification in
generalized site occupancy models; in this case, knowledge
of pertinent biology helped them identify which mode of a
multimodal solution best represented truth without the need
for auxiliary data on (mis)classification rates.

Alternatively, individual state may be only ‘partially
observable’ for a fraction of the individuals encountered at a
given sampling period. In such cases, the individual is

encountered, but state is not observed (Fig. 1). We distinguish
‘partial observability’ from truly ‘unobservable states’, which
strictly applies only to individuals that are not encountered,
either because they are not available for encounter (encounter
probability equals 0 for individuals in a given state) or because
of imperfect detection of available individuals (encounter
probability < 1 for individuals in a given state). Nichols 

 

et al

 

.
(2004) developed an approach for estimating sex-specific
survival when sex is not always observed. However, their approach
relied in part on strong determinism of  an unobservable
state that is fixed over the lifetime of the individual (e.g. sex).

In some cases, the line between misclassification and partial
observation is blurred even further. For instance, Kendall,
Hines & Nichols (2003) and Kendall 

 

et al

 

. (2004) developed
models based on the robust design which permitted partial
observability of a dynamic state (breeding status). Their
approach relied on extended periods where state was assumed
to be static, and on certain state assignments being unambig-
uous. Under these conditions, they were able to treat the
partial observation process under a misclassification framework
where only one state could be misclassified.

Here, we propose a new multistate capture–recapture
model capable of handling partially observable states such
that a hidden or partially observable Markov process
determines state dynamics. In particular, we model both the
detection process as well as the process of obtaining data on
state conditional on being detected. Our approach differs
from previously proposed models for unknown state (e.g. sex
class; cf. Nichols 

 

et al

 

. 2004) in that (i) the state of individuals
is allowed to change over time, and (ii) it does not impose a
directional misclassification error by assigning all encountered
individuals to a state (e.g. breeding state; cf. Kendall 

 

et al

 

.
2004). In addition, the approach we describe may be more
general, since it might apply to cases where strong determin-
ism of at least one state is not practical, given the limits of the
available data (

 

contra

 

 Kendall 

 

et al

 

. 2004). The hidden
Markov model (hereafter, HMM) that we propose falls under
the general class of ‘Multievent’ models described by Pradel
(2005). The multievent framework is quite general; a number
of multistate mark–recapture models may be fit under the
general ‘umbrella’ of  multievent models (Pradel 2005).
However, some realizations of multievent models may result
in multimodal solutions (Pradel 2008; Pradel 

 

et al

 

. 2008),
with the vast majority of  possible models remaining
unexplored. Thus, it is important to demonstrate that a
particular multievent realization actually provides a reasonable
solution to the problem at hand.

After introducing the model, we conduct a small numerical
experiment to quantify expected gains in relative efficiency for
several plausible biological scenarios. That is, what increases
in precision can be expected when our method is applied vs.
simply deleting all observations for which state is unknown?
We focus on precision in this case because both approaches
are unbiased, at least for large sample sizes. Next, we illustrate
application of our method by analysing disease data from a
house finch 

 

Carpodacus mexicanus

 

 Müller population, where
true disease state for some encountered individuals is

Fig. 1. A contrast of misclassification and partial observation in a
two-state system. With pure misclassification (A), all individuals are
assigned a state, but observations are subject to misclassification. In
a partially observed system (B), states are determined definitively for
some fraction of observations, while those that cannot be determined
are recorded as unknown (‘Obs U’).
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completely ambiguous. In this study, state transitions are
governed by disease dynamics, and interest focuses on estimat-
ing survival, infection, and recovery probabilities associated
with presence or absence of conjunctivitis induced by MG.
Finally, we discuss implications of our work for studies of stage-
structured populations and disease ecology in particular.

 

Model structure

 

We assume that the investigator marks animals at discrete
encounter occasions (these may be natural markings so that
an animal need not be physically captured, provided that the
markings do not change over time). At each occasion, they
also search for animals that are previously marked. Each time
an animal is encountered, the investigator may or may not be
able to determine its state (state being disease, stage class,
etc.). If  they are able to determine state, it is determined
without error; otherwise, it is recorded as belonging to an

unknown state (denoted subsequently by a ‘U’). Other than
partial state observability, we make all the assumptions
common to multistate mark–recapture analyses (cf. Williams,
Nichols & Conroy 2002).

We develop model structure in a manner analogous to
Nichols 

 

et al

 

. (2004), but allow states to be dynamic (such that
an individual’s true state may change over time). For simplicity
of presentation, a multinomial tree diagram of population
and sampling processes is presented instead of a complete
likelihood (Fig. 2), where parameters and statistics of the
model are defined in Table 1. To illustrate calculation of a few
encounter histories, consider the case of a 3-year capture–
recapture experiment with three underlying states, ‘A’, ‘B’,
and ‘†’ († denoting dead). The following encounter types may
occur at a given sampling occasion: ‘A’ (observed in state A);
‘B’ (observed in state B); ‘U’ (observed, state unknown); ‘0’
(not encountered). For example, the encounter history ‘UBB’
denotes an individual who was encountered in the first period
in an unknown state, and was encountered in the second and third
occasion in state B. There are two possibilities: the animal
could have been in state B throughout the course of the experiment,
or could have been in state A at time one, with transition from
state A to state B occurring between the first and second sam-
pling occasions. Thus, conditioning on being encountered in
an unknown state at time 1, the probability of said history is:

As another example, consider the encounter history ‘A0U.’
Here, the true state vector could have been AAA, ABA, AAB,
or ABB. In this case, the probability of said history has four
components:

Due to the large number of  possible sample paths when
animals are not encountered, the need for an algorithm to
calculate encounter history probabilities should be apparent;
a more rigorous and general development of the likelihood
using matrix notation is presented in Supporting Material,
Appendix S1. Estimation may then proceed via maximum
likelihood as implemented in program E-SURGE (Choquet
2007; Choquet, Rouan & Pradel 2008).

Fig. 2. A multinomial tree diagram describing the probability
structure for multistate observations when state is not always observed.
Solid boxes marked A, B, and † indicate possible states (alive in state A;
alive in state B; dead), while dashed boxes represent possible
observations following initial release. Here, possible observations include
A (encountered in state A), B (encountered in state B), U (encountered
in an unknown state), and 0 (not encountered). The probability for
observing a particular encounter history is obtained by summing the
probability of all possible paths leading to a given encounter history.
The probability of a given path can be obtained by multiplying the
probabilities appearing alongside its component arrows. These probabilities
consist of functions of π, the initial state probabilities; S, apparent
survival probabilities; ψ, state transition probabilities; p, detection
probabilities; and δ, the parameters describing the partial observation
process. More rigorous definitions are provided in Table 1.

Table 1. Definitions of parameters used in the multistate mark–recapture model incorporating unknown states

Parameter Definition

Probability that an animal originally encountered at time i is in state s
Probability that an individual in state s at time i survives to time i + 1 and does not permanently emigrate from the study area
Probability that an individual in state a at time i will be in state b at time i + 1 given that it survives to i + 1
Probability that an individual in state s at time i is encountered at time i
Probability that the state of an animal is observed given that it is in state s at time i and encountered at time i

πt
s

St
s

Ψt
ab

pt
s

δt
s

Pr(UBB) = π δ ψ δ ψ δ
π δ ψ δ ψ δ

1 1 1 1 2 2 2 2 3 3

1 1 1 1 2 2 2 2 3 3

1 1

1 1 1 1

A A A AB B B B BA B B

A B B BA B B B BA B B

S p S p

S p S p

( ) ( )  

( )( ) ( ) ( )

− − +
− − − −

Pr(A0U) = π δ ψ ψ δ
π δ ψ ψ δ
π δ ψ ψ

1 1 1 1 2 2 2 3 3

1 1 1 1 2 2 2 3 3

1 1 1 1 2 2 2 3

1 1 1 1

1 1

1 1

A A A AB A A AB A A

A A A AB B B BA A A

A A A AB A A BA B

S p S p

S p S p

S p S p

( )( ) ( ) ( ) 

 ( ) ( ) 

 ( )( )

− − − −
+ − −
+ − − (( ) 

 ( ) ( ) ( )

1

1 1 1
3

1 1 1 1 2 2 2 3 3

−
+ − − −

δ
π δ ψ ψ δ

B

A A A AB B B BA B B
S p S p
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Anticipated efficiency gains

 

To illustrate anticipated gains in parameter precision by
incorporating individuals of unknown state into a multistate
capture–recapture model, we generated expected value data
for a number of hypothetical sampling scenarios. Our approach
was to fit a number of models to each data set, which varied
both by the level of state dependency assumed in model
parameters, and by the type of analysis. We then compared
the precision of model parameters for analyses incorporating
the unknown state to traditional multistate models in which
observations of unknown state were censored (Supporting
Material, Table S1).

The major factors influencing parameter efficiency (expressed
as the ratio of  relative parameter precision; Supporting
Material, Table S1) appeared to be estimation model com-
plexity and 

 

δ

 

, the underlying probability of observing the
state of an animal given that it is encountered. For survival,
relative efficiency of the traditional multistate model (

 

sensu

 

Faustino 

 

et al

 

. 2004; Senar & Conroy 2004) in relation to the
model proposed in this study was 0·2–0·5 for the case where

 

δ

 

 = 0·5, and 0·6–0·75 for the case where 

 

δ

 

 = 0·8. For the most
part, efficiency increased as estimation model complexity
increased. Relative efficiency was higher for state transition
probabilities, but still exhibited the same trends with regard to

 

δ

 

. However, the relative efficiency of state transition estimators
increased as estimation model complexity decreased (Sup-
porting Material, Table S1). For both parameter types,
precision was always better when data from animals of
unknown state were included in the analysis, a result that is
likely to be quite general (see e.g. Barker & Kavalieris 2001).

To illustrate application of our model to a real-life problem,
we consider the case of disease dynamics among house finches
encountered near Ithaca, New York.

 

Example application

 

We were initially motivated to pursue the issue of  state
uncertainty by involvement with a study by Faustino 

 

et al

 

.
(2004), who used multistate capture–recapture analysis to
explore disease dynamics of  

 

Mycoplasma gallisepticum

 

(hereafter, MG) conjunctivitis in house finches. The MG
pathogen causes moderate to severe eye swelling, sometimes
so severe that birds are virtually blind (see Dhondt 

 

et al

 

. 2005
for a general review). Researchers were interested in whether
presence or absence of clinical signs of the pathogen MG
influenced survival, and also wanted to quantify infection
and recovery rates. A mark–recapture and mark–resighting
programme was instituted for a period of 3 years, in which
time birds were captured via mist nets and marked with
individually identifiable colour bands (see Faustino 

 

et al

 

.
2004, for further details). Faustino 

 

et al

 

. (2004) employed
multistate mark–recapture models where the state of a bird at
a specific time period corresponded to presence (state I) or
absence (state N) of the bacterium.

However, their analysis was complicated by the fact that
field biologists were not always able to determine the state of

encountered birds. Field biologists could almost always
observe clinical signs (visible conjunctivitis) of recaptured
birds, but ascertaining the disease status of resighted birds
was more difficult since determining the presence of  the
pathogen was only possible when a bird’s eyes were clearly
visible. They used two approaches to deal with this logistical
difficulty. In the first, they treated unknown state birds as
members of  a separate state (state U). In the second, they
censored all ‘unknown state’ observations. The first approach
is deficient because it results in biased estimates of infection
and recovery rates (although estimates of survival and
encounter probability will typically remain unbiased).
Essentially, adding a dummy state to the model means that
transitions to/from that state have to be taken away from ‘true’
transitions. The situation is further complicated whenever

 

δ

 

A

 

 

 

≠

 

 

 

δ

 

B

 

. The second approach is deficient in the sense that one
is throwing away data, which almost invariably leads to decreased
precision on parameter estimates (Faustino 

 

et al

 

. 2004).
Some clarification may be needed to differentiate the first

of these approaches from the HMM developed earlier. In the
first of these approaches, birds in an unknown state are given
their own survival and transition probabilities. In effect, these
birds are treated as a member of a separate group of birds with
different dynamics from infected and non-infected birds.
In contrast, the HMM we advocate in this study only
incorporates process dynamics for two states: infected and
non-infected birds. Birds of unknown state are assumed to be
a member of one of the two groups; we are just not sure which
one they belong to. Focus is instead on describing how these
encounters arise according to an underlying probabilistic
framework.

In order to examine how much precision one loses in this
study by discarding data on unknown state animals, we now
analyse data from two different time periods at the Ithaca,
New York, study site. The first consists of marking and
encounter records from October to December 2000; the
second is from September to December 2002. We selected
these periods because in the first case, there are quite a few
encounters of individuals of unknown state (382 not diseased,
210 unknown, 10 infected). However, the number of encounters
of infected birds is quite low. In contrast, the 2002 data do not
have many encounters of  birds of  unknown state but the
prevalence of infection appears to be much higher (1374 not
diseased, 178 diseased, 67 unknown).

For each data set, we conducted two separate analyses. In
the first case, we used the HMM model to account for
encounters with individuals of ‘unknown’ state, while in the
second, we censored these observations and utilized a
traditional multistate mark–recapture modelling framework.
Program E-SURGE (Choquet 2007; Choquet 

 

et al

 

. 2008) was
used to conduct all analyses using the former approach
(Supporting Material, Appendix S2), while program M-
SURGE (Choquet 

 

et al

 

. 2004) was used in the latter case.
Both programs use the same numerical procedure to calculate
the standard error of parameter estimates.

We grouped males and females for simplicity and used the
results of Faustino 

 

et al

 

. (2004) to help guide selection of



 

490

 

P. B. Conn & E. G. Cooch

 

© 2008 The Authors. Journal compilation © 2008 British Ecological Society, 

 

Journal of Applied Ecology

 

, 

 

46

 

, 486–492

 

appropriate models for each data set. In particular, we ran
models where survival, capture, and state transition probabilities
were dependent upon disease state. We then compared the rel-
ative parsimony of multistate models that included additive
and interactive models of disease and time on all parameters,
as well as models without time effects, using Akaike Information
Criterion corrected for small sample size (AIC

 

c

 

; Burnham

 

 &

 

Anderson 2002). Following this model selection exercise, we
used the structure of the highest ranked traditional multistate
model as a starting point for HMM modelling, setting 

 

π

 

 and

 

δ

 

 parameters to be constant over time. However, we considered
cases where 

 

δ

 

 was or was not dependent upon disease status,
using parameter estimates and standard errors from the
highest-ranked AIC

 

c

 

 model to compare precision of the two
methods of analysis.

For the 2000 data set, the highest-ranked AIC

 

c

 

 model for
the censored data set included an additive submodel for the
effects of disease and time on capture probability; survival
and state transition probabilities depended only on disease
status. Estimated weekly apparent survival for non-infected
(state = 

 

N

 

) and infected (state = 

 

I

 

) birds were 0·910 (SE
0·058) and 1·000 (SE N/A), respectively, for the traditional
multistate model, with infection probability 

 

y

 

NI

 

 = 0·197
(SE 0·111) and recovery probability 

 

y

 

IN

 

 = 0·173 (SE 0·095).
Survival for infected birds was estimated on the boundary
and thus standard error could not be computed properly;
however, a 95% profile likelihood confidence interval was
calculated as (0·56, 1·0). When data from unknown state
encounters were also modelled via the HMM, precision
improved dramatically. In this case, estimated weekly
apparent survival for non-infected birds was 0·843 (SE 0·019).
Survival for infected birds was again estimated as 1·000
(SE N/A); a 95% profile likelihood interval was estimated
as (0·946, 1·000). Transition probabilities were estimated as

 

y

 

IN

 

 = 0·232 (SE 0·0314) and 

 

y

 

IN

 

 = 0·466 (SE 0·052). Model
selection criterion (AIC

 

c

 

) favoured the model in which 

 

δ

 

 was
allowed to vary as a function of disease state. Parameter esti-
mates for 

 

δ

 

 indicated that non-infected birds were positively
identified (

 

d

 

N

 

 = 1·000, SE N/A), while most infected encoun-
ters were classified as ‘unknown’ (

 

d

 

I

 

 = 0·045, SE 0·014).
For the 2002 data set, model selection favoured a model

with submodels for survival and capture probability that were
additive with respect to disease status and time, but in which
state transition probabilities were time invariant. In this case,
improvements to precision bordered on negligible (Supporting
Material, Table S2). The probability of positively identifying
a non-infected bird was estimated to be 0·954 (SE 0·006),
while the probability of positively identifying an infected bird
was estimated to be 0·998 (SE 0·012).

Precision contrasts for this study underscored results from
numerical efficiency experiments. When unknown state encounters
made up a notable proportion of total observations, precision
increased substantially when the HMM was used to account
for unknown state encounters. This was evident from the 2000
data set, where precision of survival and transition rates was
much improved from the traditional multistate approach
employed by Faustino 

 

et al

 

. (2004). However, estimator precision

was similar for the two approaches in the 2002 data set, where
unknown state encounters only accounted for 67 of a total of
1619 encounters.

 

Discussion

 

Multistate mark–reencounter models are important tools
for investigating and parameterizing dynamical models of
animal and plant populations, and are in wide use in applied
ecology. While initial interest in MSMR models focused on
model structure and parameter identifiability, there has been
increasing consideration of these models as an omnibus
framework for estimating a large number of key parameters
(Nichols & Kendall 1995; Lebreton, Almeras & Pradel 1999),
including the transitions to and from states which may not be
completely observable (Pradel 2008). In this study, we have
outlined a method for incorporating unknown states into
such analyses when state is partially observed. Multistate
models are typically data-hungry, and we have shown that a
substantial decrease in precision may result if  encounters of
individuals whose state cannot be determined are censored
prior to analysis. This is particularly the case when the number
of unknown state encounters makes up a large percentage of
the observations. Censoring data when state cannot be
ascertained is also a viable solution leading to unbiased
estimators of parameters of interest. The issue then is whether
to sacrifice some precision in favour of using a simpler model
with fewer assumptions (e.g. by censoring data), or whether
to employ a more complicated model to be able to utilize all
available data (but perhaps at the expense of introducing bias
if  assumptions are not met). In data-poor situations, we
believe the latter will often be preferable, although consequences
of assumption violations certainly deserve more investigation.

In this study, we have concentrated on the case where
animals are sampled instantaneously at regular intervals.
While we believe our formulation to be less restrictive, we note
that more information can be obtained when two or more
samples are obtained consecutively and the system is assumed
to be static between consecutive observations. This approach
to sampling is usually termed the ‘robust design,’ and
enhances the investigator’s ability to make inferences about
partial observability and misclassification (e.g. Kendall 

 

et al

 

.
2003, 2004; Kendall 2008). In this manner, if  the observations
‘A’ and ‘U’ are obtained on the same animal close enough
together to preclude a state transition from ‘A’ to ‘B’, we are
able to infer that the ‘U’ observation really corresponded to state
A, and are thus able to infer more about the partial observa-
tion process. Similarly, if  we observe the states ‘A’ and ‘B’ in a
similar duration, this gives us information about misclassifi-
cation, a problem we have not considered in this paper. In our
numerical study, we found that parameters can be identified
when the correct state can be identified for at least some
fraction of the encounters (except for the pathological case
where transition probabilities all equal 0·5; Supporting
Material, Table S1). A further consideration when extending
the HMM to include misclassification in addition to partial
observation is whether parameters can be identified, in this
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case without auxiliary information on classification rates.
For static states (e.g. sex for most organisms), Pradel 

 

et al

 

.
(2008) showed that introducing misclassification can result in
multimodal solutions but suggested that one can often choose
which one is more plausible biologically (see also, Royle &
Link 2006). There is clearly a need for further exploration of
parameter identification issues in multievent models, but this
will probably be a function of the ecological problem under
investigation. Although the Catchpole–Morgan–Freeman
method (e.g. Catchpole, Morgan & Freeman 1998) may be
useful for diagnosing parameter redundancy, it cannot detect
when there are a finite number of multimodal solutions
(Pradel 

 

et al

 

. 2008).
Previous mark–recapture studies of  avian disease have

provided strong evidence that detectability of infected and
non-infected individuals varies over time, space, and disease
status (Senar & Conroy 2004; Jennelle 

 

et al

 

. 2007), indicating
that the common approach of fitting dynamical disease models
to time series of  counts may lead to erroneous inferences.
Use of MSMR appears a robust solution to the problem of
accounting for imperfect state-specific detection probabilities
in the estimation of key disease parameters (

 

sensu

 

 Faustino

 

et al

 

. 2004; Senar & Conroy 2004), parameters which are often
the focus of field experiments (e.g. Caley & Ramsey 2001;
Caley & Hone 2004). However, it is important to recognize
that there are several key assumptions which might reduce the
utility of the MSMR approach in some cases. Many of these
assumptions are quite general, and are not unique to the
study of disease dynamics. First, MSMR requires a fixed
number of discrete states; in the context of our finch disease
example, individuals were classified as infected or not infected.
While this dichotomy makes the problem tractable, it is
important to recognize that the underlying state space for
disease dynamics, and probably many other biological
processes, is likely to be continuous (or nearly so) in most
situations, with susceptibility and mortality likely varying by
phenotype, disease history, and severity of infection. In this
respect, classifying animals based on presence or absence of a
pathogen may be overly simplistic. Further, we have assumed
that the state of an individual is determined accurately if
information on state is obtained at all. In some situations, we
expect that some level of  misclassification may exist. In
this case, sensitivity and specificity of the state assignment
procedure would also need to be estimated and incorporated
into model structure (

 

sensu

 

 Fujiwara & Caswell 2002; Runge
et al. 2007). This type of  misclassification is increasingly
considered in clinical studies of disease. In addition, as in
most multistate mark–recapture applications, state transitions
were assumed to occur immediately prior to sampling periods
in order to avoid having to model competing risks associated
with survival and state transition. One could contemplate a
more realistic continuous time formulation, perhaps with
constant (or piecewise constant) hazard rates where events
are exponentially distributed. Other developments would
also be needed to model the rate of infection when it depends
on the number of infected individuals, and when sojourn
times depend on how long an individual has already spent in

a given state. Although nontrivial, we are cautiously optimistic
that stochastic compartment models fit using Bayesian
approaches will be useful in this regard (cf. Gibson & Renshaw
1998; O’Neill & Roberts 1999; Höhle, Jørgensen & O’Neill.
2005).

Stage-structured population models are important tools
for managing and conserving natural populations. Such
models are frequently used to explore population viability, to
examine the importance of individual life stages to perturba-
tions, and to project population dynamics into the future
when examining different management strategies. Such
models are also important in investigating the drivers behind
population dynamics, as in the case of house finch conjunctivitis
disease system. Here, we have shown how to incorporate data
from unknown states when estimating the parameters of these
models with MSMR data. In particular, applied ecologists
can increase the quantity of data available for estimating state
transition parameters by incorporating hidden Markov
models into the estimation process, thus obtaining more
precise inferences and predictions about stage-structured
populations.
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Appendix S1. Model likelihood formulation for a multistate mark-recapture study when state

cannot always be ascertained.

For simplicity, we describe a model with 2 states, each of which has a direct biological

interpretation (e.g. breeder/nonbreeder, infected/not infected). During a given sampling occasion,

an animal may be in state A, state B, or may be dead. Given that it is alive, the following

observations may be made: ”1” (alive in state A), ”2” (alive in state B), or ”3” (alive, state could

not be ascertained). The state ”†” is an absorbing state representing death or permanent

emigration from the study area.

As with the case of most capture-recapture models, inference is based on a multinomial

likelihood for encounters of marked individuals. Following Pradel (2005), we describe the model

directly in terms of the probability of individual encounter histories (Barker, Burnham & White

2004) where Pr(Hi) gives the probability of the encounter history for individual i conditioned on

first capture. Inference is then based on the likelihood

L =
M∏

i=1

Pr(Hi),

where M denotes the total number of individuals marked and released during the study. The

probability of an individual encounter history can then be written exactly as in Pradel (2005),

section 2.4. What remains is to define matrices for πt, Φt, Bt, and B0
t (Pradel 2005). For the

present application, we define

πt =
[

πA
t 1− πA

t 0

]
,

φt =




φA
t 0 1− φA

t

0 φB
t 1− φB

t

0 0 1




,

1



ψt =




1− ψAB
t ψAB

t 0

ψBA
t 1− ψBA

t 0

0 0 1




,

B0
t =




0 δA
t 0 1− δA

t

0 0 δB
t 1− δB

t

1 0 0 0




,

B1
t =




1− pA
t pA

t 0

1− pB
t 0 pB

t

1 0 0




, and

B2
t =




1 0 0 0

0 δA
t 0 1− δA

t

0 0 δB
t 1− δB

t




.

The matrices Bt and Φt are then given by matrix multiplication, where Bt = B1
tB

2
t , and

Φt = φtψt. Columns 1, 2, 3, and 4 of B0
t and Bt represent the events “not observed”,

“encountered in state A,” “encountered in state B,” and “encountered in unknown state,”

respectively. Similarly, the rows of said matrices correspond to the true underlying states A, B,

and †.
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Appendix S2. Instructions for implementing the hidden Markov model for disease dynamics in

program E-SURGE.

It is possible to implement multistate mark-recapture analysis with unknown states in

program E-SURGE (Choquet 2007; Choquet, Rouan, & Pradel 2008), which is freely

downloadable at http://www.cefe.cnrs.fr/biom/En/softwares.htm. Although basic help files

and examples are provided by Choquet (2007) and Choquet et al. (2008), we provide some detail

on how to implement this model for the hidden Markov model for disease dynamics. We assume

the user is able to load their data into the program and to specify the correct number of groups,

states, events, age classes, and covariates. In the disease example, this combination is (1,3,4,1,0).

Program E-SURGE works by decomposing dynamics into processes associated with initial states,

transitions between states, and events (observations). Each of these processes can be further

decomposed into a number of component processes which can be described in the form of matrix

transitions (see, e.g., Appendix S1). The basic structural form needed to run analyses is specified

with the following “pattern” matrices in the “GEPAT” module in E-SURGE. Here, ‘*’ entries

denote the complement of the sum of positive row entries, and ‘-’ entries denote zeroes.

For the initial state vector, we have

πt =
[

π ∗
]

,

For the transition “parameter matrices”, we need to change the “number of steps” to 2, and

specify two transition matrices (one for survival and one for the probability of transition given

survival):

φt =




φ − ∗
− φ ∗
− − ∗




,

1



ψt =




∗ ψ −
ψ ∗ −
− − ∗




,

Finally, for the event process, we again change the default for “number of steps” to two so we can

decompose the observation process into a process for capture probability and a process for state

identification, represented by the two pattern matrices:

B1,t =




∗ β −
∗ − β

∗ − −




,

B2,t =




∗ − − −
− δ − ∗
− − δ ∗




.

After these structures are specified in “GEPAT,” the user must symbolically formulate

design matrices to specify linear models for each parameter. This can be done using the

“GEMACO” function in E-SURGE; help files are available to help with this process (Choquet

2007; Choquet, Rouan, & Pradel 2007). In particular, there are a number of shortcuts that can be

specified to automatically control which parameters are to be time-constant, time-specific,

state-specific, etc. In general, this process should be straightforward with one possible exception;

in order to model detection probability correctly, one needs to specify different probabilities for

detection probability in the first time interval from those in later intervals. This is because the

encounter history is conditional on being caught in the first period and hence detection

probability is one. To account for this, one needs to specify the linear model for detection

probability to be of the form “a(1)+a(2).[model],” where ‘model’ specifies the linear model one

wishes to specify for detection probability after the first occasion an animal is encountered. When

specifying initial parameter values, one should then constrain beta values associated with the first

‘age’ class to 1.0. In addition to help files, R. Choquet provides a nice presentation complete with
2



screen shots and worked examples to demonstrate E-SURGE at

http://www.cefe.cnrs.fr/biom/PDF/Choquet-Examples-Euring-2007.pdf.
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Table S1. Relative efficiency, e(θ) =
ˆV ar1(θ̂)
ˆV ar2(θ̂)

, of estimators based on the naive multistate model

in comparison to the multievent model incorporating unknown states.

All expected value data were generated with SA
t = SB

t = 0.6, pA
t = pB

t = 0.5, with other

parameters varying according to input configuration. The value for R gives the number of releases

per year, with other variables defined in the main manuscript text. In each case, three estimation

models were fit to the data, varying by complexity. Model 1 ([1]; S(s)p(s)δ(s)) incorporated

state-specific effects on survival, detection probability, and state identification parameters, while

model 2 ([2]; S(·)p(s)δ(s)) involved setting survival equal across state and Model 3 ([3];

S(·)p(·)δ(·)) involved setting all parameters equal across state. All parameters were assumed to be

time constant. Results for relative efficiency respective to survival (S) are presented in (A), while

results for state transition probabilities ψAB and ψBA are presented in (B) and (C), respectively.

1



A. S
R πA ψAB ψBA δ e(SA)[1] e(SB)[1] e(S)[2] e(S)[3]
20 0.2 0.5 0.5 0.5 0.39 0.27 0.21 0.20
20 0.2 0.5 0.5 0.8 0.75 0.65 0.61 0.61
20 0.2 0.5 0.2 0.5 0.38 0.26 0.20 0.20
20 0.2 0.5 0.2 0.8 0.73 0.64 0.60 0.60
20 0.2 0.2 0.2 0.5 0.36 0.26 0.20 0.20
20 0.2 0.2 0.2 0.8 0.71 0.64 0.60 0.60
20 0.5 0.5 0.5 0.5 0.33 0.33 0.20 0.20
20 0.5 0.5 0.5 0.8 0.69 0.69 0.60 0.60
20 0.5 0.5 0.2 0.5 0.33 0.31 0.20 0.20
20 0.5 0.5 0.2 0.8 0.70 0.69 0.60 0.60
20 0.5 0.2 0.2 0.5 0.31 0.31 0.20 0.20
20 0.5 0.2 0.2 0.8 0.67 0.67 0.60 0.60
100 0.2 0.5 0.5 0.5 0.50 0.20 0.20 0.20
100 0.2 0.5 0.5 0.8 0.74 0.65 0.60 0.60
100 0.2 0.5 0.2 0.5 0.38 0.26 0.20 0.20
100 0.2 0.5 0.2 0.8 0.72 0.64 0.60 0.60
100 0.2 0.2 0.2 0.5 0.36 0.26 0.20 0.20
100 0.2 0.2 0.2 0.8 0.71 0.64 0.60 0.60
100 0.5 0.5 0.5 0.5 0.33 0.33 0.20 0.20
100 0.5 0.5 0.5 0.8 0.69 0.69 0.60 0.60
100 0.5 0.5 0.2 0.5 0.32 0.33 0.20 0.20
100 0.5 0.5 0.2 0.8 0.68 0.68 0.60 0.60
100 0.5 0.2 0.2 0.5 0.31 0.31 0.20 0.20
100 0.5 0.2 0.2 0.8 0.68 0.68 0.60 0.60

2



B. ψAB

R πA ψAB ψBA δ e(ψAB)[1] e(ψAB)[2] e(ψAB)[3]
20 0.2 0.5 0.5 0.5 ‡ ‡ 0.91
20 0.2 0.5 0.5 0.8 ‡ ‡ 0.98
20 0.2 0.5 0.2 0.5 0.56 0.68 0.91
20 0.2 0.5 0.2 0.8 0.82 0.84 0.97
20 0.2 0.2 0.2 0.5 0.73 0.80 0.92
20 0.2 0.2 0.2 0.8 0.89 0.93 0.98
20 0.5 0.5 0.5 0.5 ‡ ‡ 0.83
20 0.5 0.5 0.5 0.8 ‡ ‡ 0.93
20 0.5 0.5 0.2 0.5 0.51 0.59 0.79
20 0.5 0.5 0.2 0.8 0.83 0.82 0.92
20 0.5 0.2 0.2 0.5 0.63 0.75 0.85
20 0.5 0.2 0.2 0.8 0.84 0.89 0.95
100 0.2 0.5 0.5 0.5 ‡ ‡ 0.86
100 0.2 0.5 0.5 0.8 ‡ ‡ 0.98
100 0.2 0.5 0.2 0.5 0.57 0.70 0.93
100 0.2 0.5 0.2 0.8 0.81 0.85 0.98
100 0.2 0.2 0.2 0.5 0.73 0.81 0.91
100 0.2 0.2 0.2 0.8 0.90 0.91 0.98
100 0.5 0.5 0.5 0.5 ‡ ‡ 0.83
100 0.5 0.5 0.5 0.8 ‡ ‡ 0.94
100 0.5 0.5 0.2 0.5 0.49 0.54 0.79
100 0.5 0.5 0.2 0.8 0.73 0.81 0.92
100 0.5 0.2 0.2 0.5 0.63 0.74 0.85
100 0.5 0.2 0.2 0.8 0.85 0.90 0.94
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C. ψBA

R πA ψAB ψBA δ e(ψBA)[1] e(ψBA)[2] e(ψBA)[3]
20 0.2 0.5 0.5 0.5 ‡ ‡ 0.69
20 0.2 0.5 0.5 0.8 ‡ ‡ 0.89
20 0.2 0.5 0.2 0.5 0.49 0.63 0.75
20 0.2 0.5 0.2 0.8 0.78 0.81 0.91
20 0.2 0.2 0.2 0.5 0.52 0.64 0.73
20 0.2 0.2 0.2 0.8 0.78 0.84 0.91
20 0.5 0.5 0.5 0.5 ‡ ‡ 0.83
20 0.5 0.5 0.5 0.8 ‡ ‡ 0.94
20 0.5 0.5 0.2 0.5 0.49 0.57 0.85
20 0.5 0.5 0.2 0.8 0.82 0.82 0.95
20 0.5 0.2 0.2 0.5 0.64 0.74 0.85
20 0.5 0.2 0.2 0.8 0.84 0.89 0.95
100 0.2 0.5 0.5 0.5 ‡ ‡ 0.67
100 0.2 0.5 0.5 0.8 ‡ ‡ 0.88
100 0.2 0.5 0.2 0.5 0.52 0.65 0.76
100 0.2 0.5 0.2 0.8 0.75 0.82 0.91
100 0.2 0.2 0.2 0.5 0.52 0.65 0.73
100 0.2 0.2 0.2 0.8 0.79 0.84 0.90
100 0.5 0.5 0.5 0.5 ‡ ‡ 0.82
100 0.5 0.5 0.5 0.8 ‡ ‡ 0.93
100 0.5 0.5 0.2 0.5 0.60 0.54 0.85
100 0.5 0.5 0.2 0.8 0.74 0.82 0.95
100 0.5 0.2 0.2 0.5 0.63 0.75 0.85
100 0.5 0.2 0.2 0.8 0.84 0.90 0.94
‡These combination of input values appeared to be pathological and led to extremely unstable
(non-identifiable) estimates of ψAB and ψBA; The condition ψAB=ψBA=0.5 implies completely
random transitions and has been noted to cause problems in similar (albeit simpler) models (e.g.,
Royle and Link 2006)
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Table S2. Parameter estimates and standard errors for the 2002 house finch analysis.

Parameter estimates and standard errors for survival (Ss
i ) and transition probability (ψst

i ) for the

house finch field study near Ithaca, NY from September to December, 2002. The subscript i

denotes the week of the study. Results are presented for two modeling approaches. In the first,

encounters of birds where state cannot be determined are censored for analysis (denoted TRAD

to indicate it is the traditional approach to analyzing multistate mark-recapture data). In the

second, encounters of unknown state individuals are incorporated into the analysis via a hidden

Markov model (denoted HMM). A superscript of “N” is used to denote the uninfected state, while

“I” is used for the infected state.

1



TRAD HMM
Parameter Estimate SE Estimate SE

φN
1 0.792 0.088 0.819 0.084

φN
2 0.971 0.064 0.962 0.065

φN
3 0.757 0.059 0.758 0.058

φN
4 0.933 0.075 0.921 0.075

φN
5 0.957 0.085 0.936 0.083

φN
6 0.548 0.068 0.587 0.068

φN
7 0.784 0.095 0.767 0.090

φN
8 0.781 0.086 0.797 0.082

φN
9 0.801 0.078 0.811 0.074

φN
10 0.778 0.072 0.787 0.068

φN
11 0.854 0.066 0.861 0.062

φN
12 0.955 0.200 1.000 N/A

φN
13 0.580 0.131 0.570 0.061

φN
14 0.803 0.085 0.822 0.079

φN
15 0.689 0.227 0.681 0.225

φI
1 0.635 0.128 0.672 0.128

φI
2 0.939 0.133 0.919 0.134

φI
3 0.588 0.092 0.587 0.092

φI
4 0.865 0.141 0.840 0.137

φI
5 0.911 0.170 0.868 0.158

φI
6 0.357 0.078 0.391 0.083

φI
7 0.625 0.142 0.598 0.132

φI
8 0.620 0.126 0.640 0.124

φI
9 0.648 0.120 0.661 0.117

φI
10 0.616 0.108 0.626 0.104

φI
11 0.728 0.114 0.737 0.109

φI
12 0.907 0.393 1.000 N/A

φI
13 0.388 0.142 0.376 0.077

φI
14 0.651 0.128 0.677 0.123

φI
15 0.504 0.246 0.492 0.249

ψNI
1 0.040 0.005 0.039 0.005

ψIN
2 0.225 0.050 0.235 0.052
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